ICLR 2020 Papers with Code
We identified around 200 ICLR 2020 papers that have code or data published. We list all of them in the following table. Since the extraction step is done by machines, we may miss some papers. Let us know if more papers can be added to this table.
If you do not want to miss any interesting academic paper, you are welcome to sign up our free daily paper digest service to get updates on new papers published in your area every day. You are also welcome to follow us on Twitter and Linkedin to get updated with new conference digests.
Paper Digest Team
team@paperdigest.org
Title | Authors | Code | |
---|---|---|---|
1 | Graph Neural Networks Exponentially Lose Expressive Power for Node Classification | Kenta Oono, Taiji Suzuki | link |
2 | Estimating Gradients for Discrete Random Variables by Sampling without Replacement | Wouter Kool, Herke van Hoof, Max Welling | link |
3 | Intensity-Free Learning of Temporal Point Processes | Oleksandr Shchur, Marin Bilo�, Stephan G�nnemann | link |
4 | PC-DARTS: Partial Channel Connections for Memory-Efficient Architecture Search | Yuhui Xu, Lingxi Xie, Xiaopeng Zhang, Xin Chen, Guo-Jun Qi, Qi Tian, Hongkai Xiong | link |
5 | Enhancing Adversarial Defense by k-Winners-Take-All | Chang Xiao, Peilin Zhong, Changxi Zheng | link |
6 | Encoding word order in complex embeddings | Benyou Wang, Donghao Zhao, Christina Lioma, Qiuchi Li, Peng Zhang, Jakob Grue Simonsen | link |
7 | Ridge Regression: Structure, Cross-Validation, and Sketching | Sifan Liu, Edgar Dobriban | link |
8 | Influence-Based Multi-Agent Exploration | Tonghan Wang*, Jianhao Wang*, Yi Wu, Chongjie Zhang | link |
9 | Duration-of-Stay Storage Assignment under Uncertainty | Michael Lingzhi Li, Elliott Wolf, Daniel Wintz | link |
10 | The Logical Expressiveness of Graph Neural Networks | Pablo Barcel�, Egor V. Kostylev, Mikael Monet, Jorge P�rez, Juan Reutter, Juan Pablo Silva | link |
11 | Disentangling neural mechanisms for perceptual grouping | Junkyung Kim, Drew Linsley, Kalpit Thakkar, Thomas Serre | link |
12 | Learning to Plan in High Dimensions via Neural Exploration-Exploitation Trees | Binghong Chen, Bo Dai, Qinjie Lin, Guo Ye, Han Liu, Le Song | link |
13 | Simplified Action Decoder for Deep Multi-Agent Reinforcement Learning | Hengyuan Hu, Jakob N Foerster | link |
14 | Network Deconvolution | Chengxi Ye, Matthew Evanusa, Hua He, Anton Mitrokhin, Thomas Goldstein, James A. Yorke, Cornelia Fermuller, Yiannis Aloimonos | link |
15 | NAS-Bench-102: Extending the Scope of Reproducible Neural Architecture Search | Xuanyi Dong, Yi Yang | link |
16 | Behaviour Suite for Reinforcement Learning | Ian Osband, Yotam Doron, Matteo Hessel, John Aslanides, Eren Sezener, Andre Saraiva, Katrina McKinney, Tor Lattimore, Csaba Szepezvari, Satinder Singh, Benjamin Van Roy, Richard Sutton, David Silver, Hado Van Hasselt | link |
17 | And the Bit Goes Down: Revisiting the Quantization of Neural Networks | Pierre Stock, Armand Joulin, R�mi Gribonval, Benjamin Graham, Herv� J�gou | link |
18 | Model Based Reinforcement Learning for Atari | Lukasz Kaiser, Mohammad Babaeizadeh, Piotr Milos, Blazej Osinski, Roy H Campbell, Konrad Czechowski, Dumitru Erhan, Chelsea Finn, Piotr Kozakowski, Sergey Levine, Afroz Mohiuddin, Ryan Sepassi, George Tucker, Henryk Michalewski | link |
19 | Neural Tangents: Fast and Easy Infinite Neural Networks in Python | Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Jascha Sohl-Dickstein, Samuel S. Schoenholz | link |
20 | Differentiation of Blackbox Combinatorial Solvers | Marin Vlastelica Pogancic, Anselm Paulus, Vit Musil, Georg Martius, Michal Rolinek | link |
21 | Meta-Learning Acquisition Functions for Transfer Learning in Bayesian Optimization | Michael Volpp, Lukas Froehlich, Kirsten Fischer, Andreas Doerr, Stefan Falkner, Frank Hutter, Christian Daniel | link |
22 | Maximum Likelihood Constraint Inference for Inverse Reinforcement Learning | Dexter R.R. Scobee, S. Shankar Sastry | link |
23 | Spectral Embedding of Regularized Block Models | Nathan De Lara, Thomas Bonald | link |
24 | What Can Neural Networks Reason About? | Keyulu Xu, Jingling Li, Mozhi Zhang, Simon S. Du, Ken-ichi Kawarabayashi, Stefanie Jegelka | link |
25 | Training individually fair ML models with sensitive subspace robustness | Mikhail Yurochkin, Amanda Bower, Yuekai Sun | link |
26 | Learning from Rules Generalizing Labeled Exemplars | Abhijeet Awasthi, Sabyasachi Ghosh, Rasna Goyal, Sunita Sarawagi | link |
27 | Directional Message Passing for Molecular Graphs | Johannes Klicpera, Janek Gro�, Stephan G�nnemann | link |
28 | At Stability’s Edge: How to Adjust Hyperparameters to Preserve Minima Selection in Asynchronous Training of Neural Networks? | Niv Giladi, Mor Shpigel Nacson, Elad Hoffer, Daniel Soudry | link |
29 | Kaleidoscope: An Efficient, Learnable Representation For All Structured Linear Maps | Tri Dao, Nimit Sohoni, Albert Gu, Matthew Eichhorn, Amit Blonder, Megan Leszczynski, Atri Rudra | link |
30 | Neural Arithmetic Units | Andreas Madsen, Alexander Rosenberg Johansen | link |
31 | Depth-Width Trade-offs for ReLU Networks via Sharkovsky’s Theorem | Vaggos Chatziafratis, Sai Ganesh Nagarajan, Ioannis Panageas, Xiao Wang | link |
32 | Geom-GCN: Geometric Graph Convolutional Networks | Hongbin Pei, Bingzhe Wei, Kevin Chen-Chuan Chang, Yu Lei, Bo Yang | link |
33 | BackPACK: Packing more into Backprop | Felix Dangel, Frederik Kunstner, Philipp Hennig | link |
34 | Data-dependent Gaussian Prior Objective for Language Generation | Zuchao Li, Rui Wang, Kehai Chen, Masso Utiyama, Eiichiro Sumita, Zhuosheng Zhang, Hai Zhao | link |
35 | Contrastive Learning of Structured World Models | Thomas Kipf, Elise van der Pol, Max Welling | link |
36 | Optimal Strategies Against Generative Attacks | Roy Mor, Erez Peterfreund, Matan Gavish, Amir Globerson | link |
37 | GraphZoom: A Multi-level Spectral Approach for Accurate and Scalable Graph Embedding | Chenhui Deng, Zhiqiang Zhao, Yongyu Wang, Zhiru Zhang, Zhuo Feng | link |
38 | Comparing Fine-tuning and Rewinding in Neural Network Pruning | Alex Renda, Jonathan Frankle, Michael Carbin | link |
39 | Understanding and Robustifying Differentiable Architecture Search | Arber Zela, Thomas Elsken, Tonmoy Saikia, Yassine Marrakchi, Thomas Brox, Frank Hutter | link |
40 | Implementation Matters in Deep RL: A Case Study on PPO and TRPO | Logan Engstrom, Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Firdaus Janoos, Larry Rudolph, Aleksander Madry | link |
41 | Learning to Balance: Bayesian Meta-Learning for Imbalanced and Out-of-distribution Tasks | Donghyun Na, Hae Beom Lee, Hayeon Lee, Saehoon Kim, Minseop Park, Eunho Yang, Sung Ju Hwang | link |
42 | Reformer: The Efficient Transformer | Nikita Kitaev, Lukasz Kaiser, Anselm Levskaya | link |
43 | Intrinsically Motivated Discovery of Diverse Patterns in Self-Organizing Systems | Chris Reinke, Mayalen Etcheverry, Pierre-Yves Oudeyer | link |
44 | Restricting the Flow: Information Bottlenecks for Attribution | Karl Schulz, Leon Sixt, Federico Tombari, Tim Landgraf | link |
45 | Building Deep Equivariant Capsule Networks | Sairaam Venkatraman, S. Balasubramanian, R. Raghunatha Sarma | link |
46 | SEED RL: Scalable and Efficient Deep-RL with Accelerated Central Inference | Lasse Espeholt, Rapha�l Marinier, Piotr Stanczyk, Ke Wang, Marcin Michalski? | link |
47 | Sharing Knowledge in Multi-Task Deep Reinforcement Learning | Carlo D’Eramo, Davide Tateo, Andrea Bonarini, Marcello Restelli, Jan Peters | link |
48 | Neural Oblivious Decision Ensembles for Deep Learning on Tabular Data | Sergei Popov, Stanislav Morozov, Artem Babenko | link |
49 | Mutual Mean-Teaching: Pseudo Label Refinery for Unsupervised Domain Adaptation on Person Re-identification | Yixiao Ge, Dapeng Chen, Hongsheng Li | link |
50 | Federated Adversarial Domain Adaptation | Xingchao Peng, Zijun Huang, Yizhe Zhu, Kate Saenko | link |
51 | LAMAL: LAnguage Modeling Is All You Need for Lifelong Language Learning | Fan-Keng Sun, Cheng-Hao Ho, Hung-Yi Lee | link |
52 | Distance-Based Learning from Errors for Confidence Calibration | Chen Xing, Sercan Arik, Zizhao Zhang, Tomas Pfister | link |
53 | To Relieve Your Headache of Training an MRF, Take AdVIL | Chongxuan Li, Chao Du, Kun Xu, Max Welling, Jun Zhu, Bo Zhang | link |
54 | Linear Symmetric Quantization of Neural Networks for Low-precision Integer Hardware | Xiandong Zhao, Ying Wang, Xuyi Cai, Cheng Liu, Lei Zhang | link |
55 | Weakly Supervised Clustering by Exploiting Unique Class Count | Mustafa Umit Oner, Hwee Kuan Lee, Wing-Kin Sung | link |
56 | Scalable and Order-robust Continual Learning with Additive Parameter Decomposition | Jaehong Yoon, Saehoon Kim, Eunho Yang, Sung Ju Hwang | link |
57 | On Mutual Information Maximization for Representation Learning | Michael Tschannen, Josip Djolonga, Paul K. Rubenstein, Sylvain Gelly, Mario Lucic | link |
58 | Hierarchical Foresight: Self-Supervised Learning of Long-Horizon Tasks via Visual Subgoal Generation | Suraj Nair, Chelsea Finn | link |
59 | Multi-agent Reinforcement Learning for Networked System Control | Tianshu Chu, Sandeep Chinchali, Sachin Katti | link |
60 | FSPool: Learning Set Representations with Featurewise Sort Pooling | Yan Zhang, Jonathon Hare, Adam Pr�gel-Bennett | link |
61 | Dynamically Pruned Message Passing Networks for Large-scale Knowledge Graph Reasoning | Xiaoran Xu, Wei Feng, Yunsheng Jiang, Xiaohui Xie, Zhiqing Sun, Zhi-Hong Deng | link |
62 | Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks | Tianyu Pang*, Kun Xu*, Jun Zhu | link |
63 | Measuring Compositional Generalization: A Comprehensive Method on Realistic Data | Daniel Keysers, Nathanael Sch�rli, Nathan Scales, Hylke Buisman, Daniel Furrer, Sergii Kashubin, Nikola Momchev, Danila Sinopalnikov, Lukasz Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang, Marc van Zee, Olivier Bousquet | link |
64 | Rethinking Softmax Cross-Entropy Loss for Adversarial Robustness | Tianyu Pang, Kun Xu, Yinpeng Dong, Chao Du, Ning Chen, Jun Zhu | link |
65 | Learning the Arrow of Time for Problems in Reinforcement Learning | Nasim Rahaman, Steffen Wolf, Anirudh Goyal, Roman Remme, Yoshua Bengio | link |
66 | Robust Local Features for Improving the Generalization of Adversarial Training | Chuanbiao Song, Kun He, Jiadong Lin, Liwei Wang, John E. Hopcroft | link |
67 | Analysis of Video Feature Learning in Two-Stream CNNs on the Example of Zebrafish Swim Bout Classification | Bennet Breier, Arno Onken | link |
68 | Learning Disentangled Representations for CounterFactual Regression | Negar Hassanpour, Russell Greiner | link |
69 | Logic and the 2-Simplicial Transformer | James Clift, Dmitry Doryn, Daniel Murfet, James Wallbridge | link |
70 | Watch, Try, Learn: Meta-Learning from Demonstrations and Rewards | Allan Zhou, Eric Jang, Daniel Kappler, Alex Herzog, Mohi Khansari, Paul Wohlhart, Yunfei Bai, Mrinal Kalakrishnan, Sergey Levine, Chelsea Finn | link |
71 | Fooling Detection Alone is Not Enough: Adversarial Attack against Multiple Object Tracking | Yunhan Jia, Yantao Lu, Junjie Shen, Qi Alfred Chen, Hao Chen, Zhenyu Zhong, Tao Wei | link |
72 | Accelerating SGD with momentum for over-parameterized learning | Chaoyue Liu, Mikhail Belkin | link |
73 | Progressive Memory Banks for Incremental Domain Adaptation | Nabiha Asghar, Lili Mou, Kira A. Selby, Kevin D. Pantasdo, Pascal Poupart, Xin Jiang | link |
74 | Few-shot Text Classification with Distributional Signatures | Yujia Bao, Menghua Wu, Shiyu Chang, Regina Barzilay | link |
75 | Adversarial Policies: Attacking Deep Reinforcement Learning | Adam Gleave, Michael Dennis, Cody Wild, Neel Kant, Sergey Levine, Stuart Russell | link |
76 | VideoFlow: A Conditional Flow-Based Model for Stochastic Video Generation | Manoj Kumar, Mohammad Babaeizadeh, Dumitru Erhan, Chelsea Finn, Sergey Levine, Laurent Dinh, Durk Kingma | link |
77 | GLAD: Learning Sparse Graph Recovery | Harsh Shrivastava, Xinshi Chen, Binghong Chen, Guanghui Lan, Srinivas Aluru, Han Liu, Le Song | link |
78 | Editable Neural Networks | Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitry Pyrkin, Sergei Popov, Artem Babenko | link |
79 | LEARNING EXECUTION THROUGH NEURAL CODE FUSION | Zhan Shi, Kevin Swersky, Daniel Tarlow, Parthasarathy Ranganathan, Milad Hashemi | link |
80 | FasterSeg: Searching for Faster Real-time Semantic Segmentation | Wuyang Chen, Xinyu Gong, Xianming Liu, Qian Zhang, Yuan Li, Zhangyang Wang | link |
81 | Difference-Seeking Generative Adversarial Network–Unseen Sample Generation | Yi Lin Sung, Sung-Hsien Hsieh, Soo-Chang Pei, Chun-Shien Lu | link |
82 | Stochastic AUC Maximization with Deep Neural Networks | Mingrui Liu, Zhuoning Yuan, Yiming Ying, Tianbao Yang | link |
83 | MACER: Attack-free and Scalable Robust Training via Maximizing Certified Radius | Runtian Zhai, Chen Dan, Di He, Huan Zhang, Boqing Gong, Pradeep Ravikumar, Cho-Jui Hsieh, Liwei Wang | link |
84 | Adversarial Example Detection and Classification with Asymmetrical Adversarial Training | Xuwang Yin, Soheil Kolouri, Gustavo K Rohde | link |
85 | Variational Recurrent Models for Solving Partially Observable Control Tasks | Dongqi Han, Kenji Doya, Jun Tani | link |
86 | Black-Box Adversarial Attack with Transferable Model-based Embedding | Zhichao Huang, Tong Zhang | link |
87 | Action Semantics Network: Considering the Effects of Actions in Multiagent Systems | Weixun Wang, Tianpei Yang, Yong Liu, Jianye Hao, Xiaotian Hao, Yujing Hu, Yingfeng Chen, Changjie Fan, Yang Gao | link |
88 | Gap-Aware Mitigation of Gradient Staleness | Saar Barkai, Ido Hakimi, Assaf Schuster | link |
89 | Counterfactuals uncover the modular structure of deep generative models | Michel Besserve, Arash Mehrjou, Remy Sun, Bernhard Schoelkopf | link |
90 | NAS evaluation is frustratingly hard | Antoine Yang, Pedro M. Esperan�a, Fabio M. Carlucci | link |
91 | Efficient and Information-Preserving Future Frame Prediction and Beyond | Wei Yu, Yichao Lu, Steve Easterbrook, Sanja Fidler | link |
92 | A Fair Comparison of Graph Neural Networks for Graph Classification | Federico Errica, Marco Podda, Davide Bacciu, Alessio Micheli | link |
93 | SAdam: A Variant of Adam for Strongly Convex Functions | Guanghui Wang, Shiyin Lu, Quan Cheng, Weiwei Tu, Lijun Zhang | link |
94 | FEW-SHOT LEARNING ON GRAPHS VIA SUPER-CLASSES BASED ON GRAPH SPECTRAL MEASURES | Jatin Chauhan, Deepak Nathani, Manohar Kaul | link |
95 | A TARGET-AGNOSTIC ATTACK ON DEEP MODELS: EXPLOITING SECURITY VULNERABILITIES OF TRANSFER LEARNING | Shahbaz Rezaei, Xin Liu | link |
96 | Generative Ratio Matching Networks | Akash Srivastava, Kai Xu, Michael U. Gutmann, Charles Sutton | link |
97 | Option Discovery using Deep Skill Chaining | Akhil Bagaria, George Konidaris | link |
98 | On the Variance of the Adaptive Learning Rate and Beyond | Liyuan Liu, Haoming Jiang, Pengcheng He, Weizhu Chen, Xiaodong Liu, Jianfeng Gao, Jiawei Han | link |
99 | Language GANs Falling Short | Massimo Caccia, Lucas Caccia, William Fedus, Hugo Larochelle, Joelle Pineau, Laurent Charlin | link |
100 | Sign Bits Are All You Need for Black-Box Attacks | Abdullah Al-Dujaili, Una-May O’Reilly | link |
101 | Deep Semi-Supervised Anomaly Detection | Lukas Ruff, Robert A. Vandermeulen, Nico G�rnitz, Alexander Binder, Emmanuel M�ller, Klaus-Robert M�ller, Marius Kloft | link |
102 | Adaptive Structural Fingerprints for Graph Attention Networks | Kai Zhang, Yaokang Zhu, Jun Wang, Jie Zhang | link |
103 | Pure and Spurious Critical Points: a Geometric Study of Linear Networks | Matthew Trager, Kathl�n Kohn, Joan Bruna | link |
104 | Neural Text Generation With Unlikelihood Training | Sean Welleck, Ilia Kulikov, Stephen Roller, Emily Dinan, Kyunghyun Cho, Jason Weston | link |
105 | Dynamic Time Lag Regression: Predicting What & When | Mandar Chandorkar, Cyril Furtlehner, Bala Poduval, Enrico Camporeale, Michele Sebag | link |
106 | Overlearning Reveals Sensitive Attributes | Congzheng Song, Vitaly Shmatikov | link |
107 | Meta-Dataset: A Dataset of Datasets for Learning to Learn from Few Examples | Eleni Triantafillou, Tyler Zhu, Vincent Dumoulin, Pascal Lamblin, Utku Evci, Kelvin Xu, Ross Goroshin, Carles Gelada, Kevin Swersky, Pierre-Antoine Manzagol, Hugo Larochelle | link |
108 | Learning Space Partitions for Nearest Neighbor Search | Yihe Dong, Piotr Indyk, Ilya Razenshteyn, Tal Wagner | link |
109 | Toward Amortized Ranking-Critical Training For Collaborative Filtering | Sam Lobel, Chunyuan Li, Jianfeng Gao, Lawrence Carin | link |
110 | The function of contextual illusions | Drew Linsley, Junkyung Kim, Alekh Ashok, Thomas Serre | link |
111 | Fast is better than free: Revisiting adversarial training | Eric Wong, Leslie Rice, J. Zico Kolter | link |
112 | Four Things Everyone Should Know to Improve Batch Normalization | Cecilia Summers, Michael J. Dinneen | link |
113 | Learning to Learn by Zeroth-Order Oracle | Yangjun Ruan, Yuanhao Xiong, Sashank Reddi, Sanjiv Kumar, Cho-Jui Hsieh | link |
114 | Decentralized Distributed PPO: Mastering PointGoal Navigation | Erik Wijmans, Abhishek Kadian, Ari Morcos, Stefan Lee, Irfan Essa, Devi Parikh, Manolis Savva, Dhruv Batra | link |
115 | Precision Gating: Improving Neural Network Efficiency with Dynamic Dual-Precision Activations | Yichi Zhang, Ritchie Zhao, Weizhe Hua, Nayun Xu, Edward Suh, Zhiru Zhang | link |
116 | Span Recovery for Deep Neural Networks with Applications to Input Obfuscation | Rajesh Jayaram, David P. Woodruff, Qiuyi Zhang | link |
117 | Learn to Explain Efficiently via Neural Logic Inductive Learning | Yuan Yang, Le Song | link |
118 | Variational Hetero-Encoder Randomized GANs for Joint Image-Text Modeling | Hao Zhang, Bo Chen, Long Tian, Zhengjue Wang, Mingyuan Zhou | link |
119 | Composition-based Multi-Relational Graph Convolutional Networks | Shikhar Vashishth, Soumya Sanyal, Vikram Nitin, Partha Talukdar | link |
120 | Gradient-Based Neural DAG Learning | S�bastien Lachapelle, Philippe Brouillard, Tristan Deleu, Simon Lacoste-Julien | link |
121 | Composing Task-Agnostic Policies with Deep Reinforcement Learning | Ahmed H. Qureshi, Jacob J. Johnson, Yuzhe Qin, Taylor Henderson, Byron Boots, Michael C. Yip | link |
122 | Convergence Behaviour of Some Gradient-Based Methods on Bilinear Zero-Sum Games | Guojun Zhang, Yaoliang Yu | link |
123 | Learning from Explanations with Neural Module Execution Tree | Yujia Qin, Ziqi Wang, Wenxuan Zhou, Jun Yan, Qinyuan Ye, Xiang Ren, Leonardo Neves, Zhiyuan Liu | link |
124 | Economy Statistical Recurrent Units For Inferring Nonlinear Granger Causality | Saurabh Khanna, Vincent Y. F. Tan | link |
125 | TOWARDS STABILIZING BATCH STATISTICS IN BACKWARD PROPAGATION OF BATCH NORMALIZATION | Junjie Yan, Ruosi Wan, Xiangyu Zhang, Wei Zhang, Yichen Wei, Jian Sun | link |
126 | Transformer-XH: Multi-hop question answering with eXtra Hop attention | Chen Zhao, Chenyan Xiong, Corby Rosset, Xia Song, Paul Bennett, Saurabh Tiwary | link |
127 | A Closer Look at the Optimization Landscapes of Generative Adversarial Networks | Hugo Berard, Gauthier Gidel, Amjad Almahairi, Pascal Vincent, Simon Lacoste-Julien | link |
128 | Denoising and Regularization via Exploiting the Structural Bias of Convolutional Generators | Reinhard Heckel and Mahdi Soltanolkotabi | link |
129 | Generative Models for Effective ML on Private, Decentralized Datasets | Sean Augenstein, H. Brendan McMahan, Daniel Ramage, Swaroop Ramaswamy, Peter Kairouz, Mingqing Chen, Rajiv Mathews, Blaise Aguera y Arcas | link |
130 | Inductive representation learning on temporal graphs | da Xu, chuanwei ruan, evren korpeoglu, sushant kumar, kannan achan | link |
131 | Learning representations for binary-classification without backpropagation | Mathias Lechner | link |
132 | HiLLoC: lossless image compression with hierarchical latent variable models | James Townsend, Thomas Bird, Julius Kunze, David Barber | link |
133 | Adaptive Correlated Monte Carlo for Contextual Categorical Sequence Generation | Xinjie Fan, Yizhe Zhang, Zhendong Wang, Mingyuan Zhou | link |
134 | PairNorm: Tackling Oversmoothing in GNNs | Lingxiao Zhao, Leman Akoglu | link |
135 | Unsupervised Clustering using Pseudo-semi-supervised Learning | Divam Gupta, Ramachandran Ramjee, Nipun Kwatra, Muthian Sivathanu | link |
136 | Quantum Algorithms for Deep Convolutional Neural Networks | Iordanis Kerenidis, Jonas Landman, Anupam Prakash | link |
137 | Dynamic Sparse Training: Find Efficient Sparse Network From Scratch With Trainable Masked Layers | Junjie LIU, Zhe XU, Runbin SHI, Ray C. C. Cheung, Hayden K.H. So | link |
138 | GraphAF: a Flow-based Autoregressive Model for Molecular Graph Generation | Chence Shi*, Minkai Xu*, Zhaocheng Zhu, Weinan Zhang, Ming Zhang, Jian Tang | link |
139 | Graph Convolutional Reinforcement Learning | Jiechuan Jiang, Chen Dun, Tiejun Huang, Zongqing Lu | link |
140 | Multi-Agent Interactions Modeling with Correlated Policies | Minghuan Liu, Ming Zhou, Weinan Zhang, Yuzheng Zhuang, Jun Wang, Wulong Liu, Yong Yu | link |
141 | Implementing Inductive bias for different navigation tasks through diverse RNN attrractors | Tie XU, Omri Barak | link |
142 | Plug and Play Language Model: A simple baseline for controlled language generation | Sumanth Dathathri, Andrea Madotto, Janice Lan, Jane Hung, Eric Frank, Piero Molino, Jason Yosinski, Rosanne Liu | link |
143 | Pad� Activation Units: End-to-end Learning of Flexible Activation Functions in Deep Networks | Alejandro Molina, Patrick Schramowski, Kristian Kersting | link |
144 | Explain Your Move: Understanding Agent Actions Using Focused Feature Saliency | Piyush Gupta, Nikaash Puri, Sukriti Verma, Dhruv Kayastha, Shripad Deshmukh, Balaji Krishnamurthy, Sameer Singh | link |
145 | Meta Dropout: Learning to Perturb Latent Features for Generalization | Hae Beom Lee, Taewook Nam, Eunho Yang, Sung Ju Hwang | link |
146 | Learning transport cost from subset correspondence | Ruishan Liu, Akshay Balsubramani, James Zou | link |
147 | Variance Reduction With Sparse Gradients | Melih Elibol, Lihua Lei, Michael I. Jordan | link |
148 | Weakly Supervised Disentanglement with Guarantees | Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, Ben Poole | link |
149 | Nesterov Accelerated Gradient and Scale Invariance for Adversarial Attacks | Jiadong Lin, Chuanbiao Song, Kun He, Liwei Wang, John E. Hopcroft | link |
150 | Fantastic Generalization Measures and Where to Find Them | Yiding Jiang*, Behnam Neyshabur*, Dilip Krishnan, Hossein Mobahi, Samy Bengio | link |
151 | Tensor Decompositions for Temporal Knowledge Base Completion | Timoth�e Lacroix, Guillaume Obozinski, Nicolas Usunier | link |
152 | Hyper-SAGNN: a self-attention based graph neural network for hypergraphs | Ruochi Zhang, Yuesong Zou, Jian Ma | link |
153 | DropEdge: Towards Deep Graph Convolutional Networks on Node Classification | Yu Rong, Wenbing Huang, Tingyang Xu, Junzhou Huang | link |
154 | Masked Based Unsupervised Content Transfer | Ron Mokady, Sagie Benaim, Lior Wolf, Amit Bermano | link |
155 | U-GAT-IT: Unsupervised Generative Attentional Networks with Adaptive Layer-Instance Normalization for Image-to-Image Translation | Junho Kim, Minjae Kim, Hyeonwoo Kang, Kwang Hee Lee | link |
156 | Learning Robust Representations via Multi-View Information Bottleneck | Marco Federici, Anjan Dutta, Patrick Forr�, Nate Kushman, Zeynep Akata | link |
157 | Robust anomaly detection and backdoor attack detection via differential privacy | Min Du, Ruoxi Jia, Dawn Song | link |
158 | Quantifying Point-Prediction Uncertainty in Neural Networks via Residual Estimation with an I/O Kernel | Xin Qiu, Elliot Meyerson, Risto Miikkulainen | link |
159 | B-Spline CNNs on Lie groups | Erik J Bekkers | link |
160 | Efficient Probabilistic Logic Reasoning with Graph Neural Networks | Yuyu Zhang, Xinshi Chen, Yuan Yang, Arun Ramamurthy, Bo Li, Yuan Qi, Le Song | link |
161 | GraphSAINT: Graph Sampling Based Inductive Learning Method | Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, Viktor Prasanna | link |
162 | Projection Based Constrained Policy Optimization | Tsung-Yen Yang, Justinian Rosca, Karthik Narasimhan, Peter J. Ramadge | link |
163 | Training Generative Adversarial Networks from Incomplete Observations using Factorised Discriminators | Daniel Stoller, Sebastian Ewert, Simon Dixon | link |
164 | Decentralized Deep Learning with Arbitrary Communication Compression | Anastasia Koloskova*, Tao Lin*, Sebastian U Stich, Martin Jaggi | link |
165 | On the Relationship between Self-Attention and Convolutional Layers | Jean-Baptiste Cordonnier, Andreas Loukas, Martin Jaggi | link |
166 | Learning-Augmented Data Stream Algorithms | Tanqiu Jiang, Yi Li, Honghao Lin, Yisong Ruan, David P. Woodruff | link |
167 | Structured Object-Aware Physics Prediction for Video Modeling and Planning | Jannik Kossen, Karl Stelzner, Marcel Hussing, Claas Voelcker, Kristian Kersting | link |
168 | Incorporating BERT into Neural Machine Translation | Jinhua Zhu, Yingce Xia, Lijun Wu, Di He, Tao Qin, Wengang Zhou, Houqiang Li, Tieyan Liu | link |
169 | Meta-learning curiosity algorithms | Ferran Alet*, Martin F. Schneider*, Tomas Lozano-Perez, Leslie Pack Kaelbling | link |
170 | Lookahead: A Far-sighted Alternative of Magnitude-based Pruning | Sejun Park*, Jaeho Lee*, Sangwoo Mo, Jinwoo Shin | link |
171 | Spike-based causal inference for weight alignment | Jordan Guerguiev, Konrad Kording, Blake Richards | link |
172 | Empirical Bayes Transductive Meta-Learning with Synthetic Gradients | Xu Hu, Pablo Moreno, Yang Xiao, Xi Shen, Guillaume Obozinski, Neil Lawrence | link |
173 | Demystifying Inter-Class Disentanglement | Aviv Gabbay, Yedid Hoshen | link |
174 | Mixed-curvature Variational Autoencoders | Ondrej Skopek, Gary B�cigneul, Octavian-Eugen Ganea | link |
175 | BinaryDuo: Reducing Gradient Mismatch in Binary Activation Network by Coupling Binary Activations | Hyungjun Kim, Kyungsu Kim, Jinseok Kim, Jae-Joon Kim | link |
176 | BayesOpt Adversarial Attack | Binxin Ru, Adam Cobb, Arno Blaas, Yarin Gal | link |
177 | RaPP: Novelty Detection with Reconstruction along Projection Pathway | Ki Hyun Kim, Sangwoo Shim, Yongsub Lim, Jongseob Jeon, Jeongwoo Choi, Byungchan Kim, Andre S. Yoon | link |
178 | Dynamics-Aware Embeddings | William Whitney, Rajat Agarwal, Kyunghyun Cho, Abhinav Gupta | link |
179 | AdvectiveNet: An Eulerian-Lagrangian Fluidic Reservoir for Point Cloud Processing | Xingzhe He, Helen Lu Cao, Bo Zhu | link |
180 | AtomNAS: Fine-Grained End-to-End Neural Architecture Search | Jieru Mei, Yingwei Li, Xiaochen Lian, Xiaojie Jin, Linjie Yang, Alan Yuille, Jianchao Yang | link |
181 | Deep Audio Priors Emerge From Harmonic Convolutional Networks | Zhoutong Zhang, Yunyun Wang, Chuang Gan, Jiajun Wu, Joshua B. Tenenbaum, Antonio Torralba, William T. Freeman | link |
182 | Expected Information Maximization: Using the I-Projection for Mixture Density Estimation | Philipp Becker, Oleg Arenz, Gerhard Neumann | link |
183 | A Meta-Transfer Objective for Learning to Disentangle Causal Mechanisms | Yoshua Bengio, Tristan Deleu, Nasim Rahaman, Nan Rosemary Ke, Sebastien Lachapelle, Olexa Bilaniuk, Anirudh Goyal, Christopher Pal | link |
184 | Latent Normalizing Flows for Many-to-Many Cross Domain Mappings | Shweta Mahajan, Iryna Gurevych, Stefan Roth | link |
185 | Adversarial Lipschitz Regularization | D�vid Terj�k | link |
186 | Compositional Continual Language Learning | Yuanpeng Li, Liang Zhao, Kenneth Church, Mohamed Elhoseiny | link |
187 | HOW THE CHOICE OF ACTIVATION AFFECTS TRAINING OF OVERPARAMETRIZED NEURAL NETS | Abhishek Panigrahi, Abhishek Shetty, Navin Goyal | link |
188 | Lipschitz constant estimation for Neural Networks via sparse polynomial optimization | Fabian Latorre, Paul Rolland, Volkan Cevher | link |
189 | Unrestricted Adversarial Examples via Semantic Manipulation | Anand Bhattad, Min Jin Chong, Kaizhao Liang, Bo Li, David Forsyth | link |
190 | Differentiable Programming for Physical Simulation | Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, Fredo Durand | link |
191 | Sub-policy Adaptation for Hierarchical Reinforcement Learning | Alexander Li, Carlos Florensa, Ignasi Clavera, Pieter Abbeel | link |
192 | Co-Attentive Equivariant Neural Networks: Focusing Equivariance On Transformations Co-Ocurring in Data | David W. Romero Guzm�n, Mark Hoogendoorn | link |
193 | Information Geometry of Orthogonal Initializations and Training | Piotr Aleksander Sok�l, Il Memming Park | link |
194 | Extreme Classification via Adversarial Softmax Approximation | Robert Bamler, Stephan Mandt | link |
195 | NAS-BENCH-1SHOT1: BENCHMARKING AND DISSECTING ONE-SHOT NEURAL ARCHITECTURE SEARCH | Arber Zela, Julien Siems, Frank Hutter | link |
196 | The Shape of Data: Intrinsic Distance for Data Distributions | Anton Tsitsulin, Marina Munkhoeva, Davide Mottin, Panagiotis Karras, Alex Bronstein, Ivan Oseledets, Emmanuel Mueller | link |
197 | Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike Timing Dependent Backpropagation | Nitin Rathi, Gopalakrishnan Srinivasan, Priyadarshini Panda, Kaushik Roy | link |
198 | Massively Multilingual Sparse Word Representations | G�bor Berend | link |
199 | Learning The Difference That Makes A Difference With Counterfactually-Augmented Data | Divyansh Kaushik, Eduard Hovy, Zachary Lipton | link |