1, TITLE: Ensemble Block Co-clustering: A Unified Framework for Text Data

 https://dl.acm.org/doi/abs/10.1145/3340531.3412058

 AUTHORS:
 Séverine Affeldt, Lazhar Labiod, Mohamed Nadif

 HIGHLIGHT:
 In this paper, we propose a unified framework for Ensemble Block Co-clustering (EBCO), which aims to fuse

 multiple basic co-clusterings into a consensus structured affinity matrix.

2, TITLE: Learning to Personalize for Web Search Sessions https://dl.acm.org/doi/abs/10.1145/3340531.3412050 AUTHORS: Saad Aloteibi, Stephen Clark HIGHLIGHT: In this paper, we formulate session search as a personalization task under the framework of learning to rank. 3, TITLE: Optimization of Answer Set Programs for Consistent Query Answering by Means of First-Order Rewriting https://dl.acm.org/doi/abs/10.1145/3340531.3411911 AUTHORS: Aziz Amezian El Khalfioui, Jonathan Joertz, Dorian Labeeuw, Gaëtan Staquet, Jef Wijsen HIGHLIGHT: Optimization of Answer Set Programs for Consistent Query Answering by Means of First-Order Rewriting 4, TITLE: Spectral Relaxations and Fair Densest Subgraphs https://dl.acm.org/doi/abs/10.1145/3340531.3412036 AUTHORS: Aris Anagnostopoulos, Luca Becchetti, Adriano Fazzone, Cristina Menghini, Chris Schwiegelshohn HIGHLIGHT: In this paper, we address the problem of identifying a densest subgraph, while ensuring that none of one binary protected attribute is disparately impacted. 5, TITLE: The Impact of Negative Triple Generation Strategies and Anomalies on Knowledge Graph Completion

https://dl.acm.org/doi/abs/10.1145/3340531.3412023 AUTHORS: Iti Bansal, Sudhanshu Tiwari, Carlos R. Rivero

HIGHLIGHT: In this paper, we analyze the impact of negative triple generation during both training and testing on translationbased completion models.

6, TITLE: tdGraphEmbed: Temporal Dynamic Graph-Level Embedding

https://dl.acm.org/doi/abs/10.1145/3340531.3411953

AUTHORS: Moran Beladev, Lior Rokach, Gilad Katz, Ido Guy, Kira Radinsky

HIGHLIGHT: In this study, we present tdGraphEmbed, a novel temporal graph-level embedding approach that extend the random-walk based node embedding methods to globally embed both the nodes of the graph and its representation at each time step, thus creating representation of the entire graph at each step.

7, TITLE: Learning to Match Jobs with Resumes from Sparse Interaction Data using Multi-View Co-Teaching Network https://dl.acm.org/doi/abs/10.1145/3340531.3411929

AUTHORS: Shuqing Bian, Xu Chen, Wayne Xin Zhao, Kun Zhou, Yupeng Hou, Yang Song, Tao Zhang, Ji-Rong Wen HIGHLIGHT: To alleviate these problems, in this paper, we propose a novel multi-view co-teaching network from sparse interaction data for job-resume matching.

8, TITLE: Incremental and Parallel Computation of Structural Graph Summaries for Evolving Graphs https://dl.acm.org/doi/abs/10.1145/3340531.3411878

AUTHORS: Till Blume, David Richerby, Ansgar Scherp

HIGHLIGHT: Existing graph summarization algorithms are tailored to specific graph summary models, only support one-time batch computation, are designed and implemented for a specific task, or evaluated using static graphs. Our novel, incremental, parallel algorithm addresses all these shortcomings.

9, TITLE: Do People and Neural Nets Pay Attention to the Same Words: Studying Eye-tracking Data for Non-factoid QA Evaluation https://dl.acm.org/doi/abs/10.1145/3340531.3412043

AUTHORS:Valeria Bolotova, Vladislav Blinov, Yukun Zheng, W. Bruce Croft, Falk Scholer, Mark SandersonHIGHLIGHT:Similarity was found, consequently, we propose a method to exploit the BERT attention map to generatesuggestions that simulate eye gaze during user evaluation.

10, TITLE: Fast and Scalable Outlier Detection with Sorted Hypercubes https://dl.acm.org/doi/abs/10.1145/3340531.3412033

AUTHORS: Eugênio F. Cabral, Robson L.F. Cordeiro

HIGHLIGHT: This paper proposes HySortOD -- a novel algorithm that uses an efficient hypercube-ordering-and-searching strategy for fast outlier detection.

11, TITLE: SenticNet 6: Ensemble Application of Symbolic and Subsymbolic AI for Sentiment Analysis	
AUTHORS: Erik Cambria, Yang Li, Frank Z. Xing, Soujanya Poria, Kenneth Kwok	
HIGHLIGHT: In this work, we integrate top-down and bottom-up learning via an ensemble of symbolic and subsymbolic AI	
tools, which we appry to the interesting problem of polarity detection norm text.	
12 TITLE. Laconic Image Classification: Human vs. Machine Performance	
https://dl.acm.org/doi/abs/10.1145/3340531.3411984	
AUTHORS: Javier Carrasco, Aidan Hogan, Jorge Pérez	
classifiers.	
13, TITLE: Retrievability based Document Selection for Relevance Feedback with Automatically Generated Query	
Variants https://dl.acm.org/doi/abs/10.1145/3340531.3412032	
AUTHORS: Anirban Chakraborty, Debasis Ganguly, Owen Conlan	
HIGHLIGHT: To mitigate the problem of over-dependence of a pseudo-relevance feedback algorithm on the top-M document	
set, we make use of a set of equivalence classes of queries famer man one single query.	
14 TITLE. Learning Granh-Based Geographical Latent Representation for Point-of-Interest Recommendation	
https://dl.acm.org/doi/abs/10.1145/3340531.3411905	
AUTHORS: Buru Chang, Gwanghoon Jang, Seoyoon Kim, Jaewoo Kang HIGHI IGHT: In this paper, we propose a new graph-based geographical latent representation model (GGLR) which can	
capture highly non-linear geographical influences from complex user-POI networks.	
15, TITLE: Continuous-Time Dynamic Graph Learning via Neural Interaction Processes	
https://dl.acm.org/doi/abs/10.1145/3340531.3411946 AUTHORS: Xiaofu Chang, Xuqin Liu, Jianfeng Wen, Shuang Li, Yanming Fang, Le Song, Yuan Oi	
HIGHLIGHT: To achieve this, we propose a principled graph-neural-based approach to learn continuous-time dynamic	
embeddings.	
16 TITLE. TOON To Could Consultational Metric de Ser Too Amore Decommendation	
https://dl.acm.org/doi/abs/10.1145/3340531.3411927	
AUTHORS: Bo Chen, Wei Guo, Ruiming Tang, Xin Xin, Yue Ding, Xiuqiang He, Dong Wang	
(TGCN), which leverages the contextual semantics of multi-hop neighbors in the user-tag-item graph to alleviate the above issues.	
17, TITLE: An Adaptive Embedding Framework for Heterogeneous Information Networks	
https://dl.acm.org/doi/abs/10.1145/3340531.3411989	
HIGHLIGHT: In this paper, we propose a novel adaptive embedding framework, which integrates these two kinds of methods	
to preserve both topological information and relational information.	
18, TITLE: Improving End-to-End Sequential Recommendations with Intent-aware Diversification	
AUTHORS: Wanyu Chen, Pengjie Ren, Fei Cai, Fei Sun, Maarten de Rijke	
HIGHLIGHT: We consider both accuracy and diversity by reformulating SRs as a list generation task, and	
recommendation (IDSR).	
19, TITLE: Unsupervised Cyberbullying Detection via Time-Informed Gaussian Mixture Model	
https://dl.acm.org/doi/abs/10.1145/3340531.3411934 AUTHORS: Lu Cheng, Kai Shu, Siqi Wu, Yasin N, Silva, Deborah L, Hall, Huan Liu	
HIGHLIGHT: To address these limitations, this work introduces a principled approach forunsupervised cyberbullying	
detection.	
20, 111LE: Product Quality Prediction with Convolutional Encoder-Decoder Architecture and Transfer Learning https://dl.acm.org/doi/abs/10.1145/3340531.3412007	
AUTHORS: Hao-Yi Chih, Yao-Chung Fan, Wen-Chih Peng, Hai-Yuan Kuo	
integrated-circuit manufacturing application.	

21, TITLE: Matching in Selective and Balanced Representation Space for Treatment Effects Estimation https://dl.acm.org/doi/abs/10.1145/3340531.3412037 AUTHORS: Zhixuan Chu, Stephen L. Rathbun, Sheng Li HIGHLIGHT: We propose a feature selection representation matching (FSRM) method based on deep representation learning and matching, which maps the original covariate space into a selective, nonlinear, and balanced representation space, and then conducts matching in the learned representation space.	
22, TITLE:TPR: Text-aware Preference Ranking for Recommender Systemshttps://dl.acm.org/doi/abs/10.1145/3340531.3411969AUTHORS:Yu-Neng Chuang, Chih-Ming Chen, Chuan-Ju Wang, Ming-Feng Tsai, Yuan Fang, Ee-Peng LimHIGHLIGHT:In this work, we present a framework of text-aware preference ranking (TPR) for top- recommendation, inwhich we comprehensively model the joint association of user-item interaction and relations between items and associated text.	
23, TITLE:Offline Evaluation by Maximum Similarity to an Ideal Rankinghttps://dl.acm.org/doi/abs/10.1145/3340531.3411915AUTHORS:Charles L. A. Clarke, Mark D. Smucker, Alexandra VtyurinaHIGHLIGHT:Rather than propose extensions to these measures, we instead propose a radical simplification to replace them.	
24, TITLE:EPNet: Learning to Exit with Flexible Multi-Branch Networkhttps://dl.acm.org/doi/abs/10.1145/3340531.3411973AUTHORS:Xin Dai, Xiangnan Kong, Tian GuoHIGHLIGHT:In this paper, we investigate the problem of designing a flexible multi-branch network and early-exiting policiesthat can adapt to the resource consumption to individual inference request without impacting the inference accuracy.	
25, TITLE:Cola-GNN: Cross-location Attention based Graph Neural Networks for Long-term ILI Predictionhttps://dl.acm.org/doi/abs/10.1145/3340531.3411975AUTHORS:Songgaojun Deng, Shusen Wang, Huzefa Rangwala, Lijing Wang, Yue NingHIGHLIGHT:In this paper, we design a cross-location attention based graph neural network (Cola-GNN) for learning timeseries embeddings in long-term ILI predictions.	
26, TITLE:Opinion-aware Answer Generation for Review-driven Question Answering in E-Commercehttps://dl.acm.org/doi/abs/10.1145/3340531.3411904AUTHORS:Yang Deng, Wenxuan Zhang, Wai LamHIGHLIGHT:In this paper, we tackle opinion-aware answer generation by jointly learning answer generation and opinionmining tasks with a unified model.	
27, TITLE:UPON: User Profile Transferring across Networkshttps://dl.acm.org/doi/abs/10.1145/3340531.3411964AUTHORS:Mengting Diao, Zhongbao Zhang, Sen Su, Shuai Gao, Huafeng CaoHIGHLIGHT:Motivated by such observations, in this paper, we for the first time propose to study the user profiling problemfrom the transfer learning perspective.	
28, TITLE: Evaluating Stochastic Rankings with Expected Exposure https://dl.acm.org/doi/abs/10.1145/3340531.3411962 AUTHORS: Fernando Diaz, Bhaskar Mitra, Michael D. Ekstrand, Asia J. Biega, Ben Carterette HIGHLIGHT: We introduce the concept of expected exposure as the average attention ranked items receive from users over repeated samples of the same query.	
29, TITLE:Towards Plausible Differentially Private ADMM Based Distributed Machine Learninghttps://dl.acm.org/doi/abs/10.1145/3340531.3411860AUTHORS:Jiahao Ding, Jingyi Wang, Guannan Liang, Jinbo Bi, Miao PanHIGHLIGHT:In this paper, we address these concerns by proposing a novel (Improved) Plausible differentially PrivateADMM algorithm, called PP-ADMM and IPP-ADMM.	
30, TITLE:Graph Prototypical Networks for Few-shot Learning on Attributed Networkshttps://dl.acm.org/doi/abs/10.1145/3340531.3411922AUTHORS:Kaize Ding, Jianling Wang, Jundong Li, Kai Shu, Chenghao Liu, Huan LiuHIGHLIGHT:To answer these questions, in this paper, we propose a graph meta-learning framework Graph Prototypical	

HIGHLIGHT: Networks (GPN).

31, TITLE: Neural Formatting for Spreadsheet Tables https://dl.acm.org/doi/abs/10.1145/3340531.3411943 AUTHORS: Haoyu Dong Dong, Jinyu Wang, Zhouyu Fu, Shi Han, Dongmei Zhang HIGHLIGHT: In this paper, we propose CellGAN, a neural formatting model for learning and recommending formats of spreadsheet tables.

32, TITLE: Enhancing Graph Neural Network-based Fraud Detectors against Camouflaged Fraudsters https://dl.acm.org/doi/abs/10.1145/3340531.3411903 Yingtong Dou, Zhiwei Liu, Li Sun, Yutong Deng, Hao Peng, Philip S. Yu AUTHORS: HIGHLIGHT: Alternatively, we propose a new model named CAmouflage-REsistant GNN (CARE-GNN), to enhance the GNN aggregation process with three unique modules against camouflages.

33, TITLE: Towards Generalizable Deepfake Detection with Locality-aware AutoEncoder https://dl.acm.org/doi/abs/10.1145/3340531.3411892 AUTHORS: Mengnan Du, Shiva Pentyala, Yuening Li, Xia Hu HIGHLIGHT: Motivated by the fine-grained nature and spatial locality characteristics of deepfakes, we propose Locality-Aware AutoEncoder (LAE) to bridge the generalization gap.

34. TITLE: **Ouality-Aware Ranking of Arguments** https://dl.acm.org/doi/abs/10.1145/3340531.3411960 AUTHORS: Lorik Dumani, Ralf Schenkel HIGHLIGHT: We present a quality-aware ranking framework for arguments already extracted from texts and represented as argument graphs, considering multiple established quality measures.

35, TITLE: RelSen: An Optimization-based Framework for Simultaneously Sensor Reliability Monitoring and Data Cleaning https://dl.acm.org/doi/abs/10.1145/3340531.3411942

AUTHORS: Cheng Feng, Xiao Liang, Daniel Schneegass, PengWei Tian

HIGHLIGHT: In this work, we propose RelSen, a novel optimization-based framework to address the two problems simultaneously via utilizing the mutual dependence between them.

36. TITLE: Critically Examining the Claimed Value of Convolutions over User-Item Embedding Maps for Recommender Systems

https://dl.acm.org/doi/abs/10.1145/3340531.3411901

AUTHORS: Maurizio Ferrari Dacrema, Federico Parroni, Paolo Cremonesi, Dietmar Jannach

HIGHLIGHT: In this work, we show through analytical considerations and empirical evaluations that the claimed gains reported in the literature cannot be attributed to the ability of CNNs to model embedding correlations, as argued in the original papers.

37. TITLE: Query-to-Session Matching: Do NOT Forget History and Future during Response Selection for Multi-Turn Dialogue Systems

https://dl.acm.org/doi/abs/10.1145/3340531.3411938

AUTHORS: Zhenxin Fu, Shaobo Cui, Feng Ji, Ji Zhang, Haiqing Chen, Dongyan Zhao, Rui Yan HIGHLIGHT: Inspired by such motivation, we propose a query-to-session matching (QSM) framework to make full use of the session information: matching the query with the candidate session instead of the response only.

38, TITLE: Learning from Textual Data in Database Systems

https://dl.acm.org/doi/abs/10.1145/3340531.3412056

AUTHORS: Michael Günther, Philipp Oehme, Maik Thiele, Wolfgang Lehner

HIGHLIGHT: We defined relation retrofitting as an optimization problem, present an efficient algorithm solving it, and investigate the influence of various hyperparameters.

39, TITLE: Rotate3D: Representing Relations as Rotations in Three-Dimensional Space for Knowledge Graph Embedding https://dl.acm.org/doi/abs/10.1145/3340531.3411889

AUTHORS: Chang Gao, Chengjie Sun, Lili Shan, Lei Lin, Mingjiang Wang

HIGHLIGHT: To address this issue, we propose a new model called Rotate3D, which maps entities to the three-dimensional space and defines relations as rotations from head entities to tail entities.

40. TITLE: Set-Sequence-Graph: A Multi-View Approach Towards Exploiting Reviews for Recommendation https://dl.acm.org/doi/abs/10.1145/3340531.3411939

AUTHORS:Jingyue Gao, Yang Lin, Yasha Wang, Xiting Wang, Zhao Yang, Yuanduo He, Xu ChuHIGHLIGHT:To overcome these limitations, we propose a multi-view approach named Set-Sequence-Graph (SSG), toaugment existing single-view (i.e., view of set) methods by introducing two additional views of exploiting reviews: sequence andgraph.
41, TITLE:How and Why is An Answer (Still) Correct? Maintaining Provenance in Dynamic Knowledge Graphshttps://dl.acm.org/doi/abs/10.1145/3340531.3411958AUTHORS:Garima Gaur, Arnab Bhattacharya, Srikanta BedathurHIGHLIGHT:Addressing this issue, we present a framework HUKA that uses provenance polynomials for tracking the derivation of query results over knowledge graphs by encoding the edges involved in generating the answer.
42, TITLE:MICK: A Meta-Learning Framework for Few-shot Relation Classification with Small Training Datahttps://dl.acm.org/doi/abs/10.1145/3340531.3411858AUTHORS:AUTHORS:HIGHLIGHT:Kiaoqing Geng, Xiwen Chen, Kenny Q. Zhu, Libin Shen, Yinggong ZhaoIn this paper, we tackle an even harder problem by further limiting the amount of data available at training time.
43, TITLE:Knowledge Graph Embedding Preserving Soft Logical Regularityhttps://dl.acm.org/doi/abs/10.1145/3340531.3412055AUTHORS:Shu Guo, Lin Li, Zhen Hui, Lingshuai Meng, Bingnan Ma, Wei Liu, Lihong Wang, Haibin Zhai, Hong ZhangHIGHLIGHT:This paper proposes a highly scalable and effective method for preserving soft logical regularities by imposingsoft rule constraints on relation representations.
44, TITLE:GraSeq: Graph and Sequence Fusion Learning for Molecular Property Predictionhttps://dl.acm.org/doi/abs/10.1145/3340531.3411981AUTHORS:Zhichun Guo, Wenhao Yu, Chuxu Zhang, Meng Jiang, Nitesh V. ChawlaHIGHLIGHT:In this paper, we propose GraSeq, a joint graph and sequence representation learning model for molecularproperty prediction.
45, TITLE:Modelling User Behavior Dynamics with Embeddingshttps://dl.acm.org/doi/abs/10.1145/3340531.3411985AUTHORS:Lei Han, Alessandro Checco, Djellel Difallah, Gianluca Demartini, Shazia SadiqHIGHLIGHT:In this paper, we present a user behavior model built using behavior embeddings to compare behaviors and theirchange over time.
46, TITLE:Genetic Meta-Structure Search for Recommendation on Heterogeneous Information Networkhttps://dl.acm.org/doi/abs/10.1145/3340531.3412015AUTHORS:Zhenyu Han, Fengli Xu, Jinghan Shi, Yu Shang, Haorui Ma, Pan Hui, Yong LiHIGHLIGHT:To address these challenges, we propose Genetic Meta-Structure Search (GEMS) to automatically optimizemeta-structure designs for recommendation on HINs.
47, TITLE:Ranking Enhanced Dialogue Generationhttps://dl.acm.org/doi/abs/10.1145/3340531.3411918AUTHORS:Changying Hao, Liang Pang, Yanyan Lan, Fei Sun, Jiafeng Guo, Xueqi ChengHIGHLIGHT:To tackle this problem, we propose a Ranking Enhanced Dialogue generation framework in this paper.
48, TITLE: Privacy-Preserving Classification with Secret Vector Machines https://dl.acm.org/doi/abs/10.1145/3340531.3412051 AUTHORS: Valentin Hartmann, Konark Modi, Josep M. Pujol, Robert West HIGHLIGHT: We address this issue by proposing a novel way of training a supervised classifier in a distributed setting akin to the recently proposed federated learning paradigm, but under the stricter privacy requirement that the server that trains the model is assumed to be untrusted and potentially malicious.
49, TITLE:Learning to Selectively Update State Neurons in Recurrent Networkshttps://dl.acm.org/doi/abs/10.1145/3340531.3412018AUTHORS:Thomas Hartvigsen, Cansu Sen, Xiangnan Kong, Elke RundensteinerHIGHLIGHT:To overcome this, we instead design the first fully-learned approach, SA-RNN, that augments any RNN bypredicting discrete update patterns at the fine granularity of individual hidden state neurons.

50, TITLE: Hypergraph Random Walks, Laplacians, and Clustering https://dl.acm.org/doi/abs/10.1145/3340531.3412034

AUTHORS:	Koby Hayashi, Sinan G. Aksoy, Cheong Hee Park, Haesun Park
HIGHLIGHT:	We propose a flexible framework for clustering hypergraph-structured data based on recently proposed random
walks utilizing edge-	dependent vertex weights.
51, TITLE: https://dl.acm.org/do AUTHORS: HIGHLIGHT: challenges.	VN Network: Embedding Newly Emerging Entities with Virtual Neighbors i/abs/10.1145/3340531.3411865 Yongquan He, Zhihan Wang, Peng Zhang, Zhaopeng Tu, Zhaochun Ren In this paper, we propose a novel framework, namely Virtual Neighbor (VN) network, to address three key
52, TITLE:	WMEgo: Willingness Maximization for Ego Network Data Extraction in Online Social Networks
https://dl.acm.org/do	i/abs/10.1145/3340531.3411867
AUTHORS:	Bay-Yuan Hsu, Chih-Ya Shen, Ming-Yi Chang
HIGHLIGHT:	Therefore, in this paper, we make our first attempt to address this issue by proposing a new research problem,
named Willingness M	faximization for Ego Network Extraction in Online Social Networks (WMEgo), to identify a set of ego networks
from the OSN such t	hat the willingness of the users to contribute their data is maximized.
53, TITLE: Systems https://dl.acm.org/do AUTHORS: HIGHLIGHT: of the Context and K	Learning to Detect Relevant Contexts and Knowledge for Response Selection in Retrieval-based Dialogue i/abs/10.1145/3340531.3411967 Kai Hua, Zhiyuan Feng, Chongyang Tao, Rui Yan, Lu Zhang To address this problem, we propose a multi-turn Response Selection Model that can Detect the relevant parts nowledge collection (RSM-DCK).
54, TITLE:	Image Captioning with Internal and External Knowledge
https://dl.acm.org/do	i/abs/10.1145/3340531.3411948
AUTHORS:	Feicheng Huang, Zhixin Li, Shengjia Chen, Canlong Zhang, Huifang Ma
HIGHLIGHT:	In this paper, we make our efforts to reason about more accurate and meaningful captions.
55, TITLE:	GNNVis: Visualize Large-Scale Data by Learning a Graph Neural Network Representation
https://dl.acm.org/do	i/abs/10.1145/3340531.3411987
AUTHORS:	Yajun Huang, Jingbin Zhang, Yiyang Yang, Zhiguo Gong, Zhifeng Hao
HIGHLIGHT:	In this work, we study the parametric (supervised) model which is capable to learn a mapping between high-
dimensional data spa	ce Rd and low-dimensional latent space Rs with similarity structure in Rd preserved where s l d.
56, TITLE:	Predicting Economic Growth by Region Embedding: A Multigraph Convolutional Network Approach
https://dl.acm.org/do	i/abs/10.1145/3340531.3411882
AUTHORS:	Bo Hui, Da Yan, Wei-Shinn Ku, Wenlu Wang
HIGHLIGHT:	By effectively utilizing open data on the Internet such as government data (e.g., from US Census Bureau) and
third-party data for si	upervised learning, we propose to first construct a multigraph that captures the various relationships between
regions such as direc	t flight connections and shared school districts, and then learn region embeddings using a novel graph
convolutional networ	ck architecture.
57, TITLE:	Sequential Recommender via Time-aware Attentive Memory Network
https://dl.acm.org/do	i/abs/10.1145/3340531.3411869
AUTHORS:	Wendi Ji, Keqiang Wang, Xiaoling Wang, Tingwei Chen, Alexandra Cristea
HIGHLIGHT:	In this paper, we propose a temporal gating methodology to improve attention mechanism and recurrent units,
so that temporal info	rmation can be considered in both information filtering and state transition.
58, TITLE:	MARU: Meta-context Aware Random Walks for Heterogeneous Network Representation Learning
https://dl.acm.org/do	i/abs/10.1145/3340531.3412040
AUTHORS:	Jyun-Yu Jiang, Zeyu Li, Chelsea JT. Ju, Wei Wang
HIGHLIGHT:	In this paper, we propose Meta-context Aware Random Walks (MARU) to overcome these challenges, thereby
learning richer and m	fore unbiased representations for heterogeneous networks.
59, TITLE: Recommendation https://dl.acm.org/do AUTHORS:	Partial Relationship Aware Influence Diffusion via a Multi-channel Encoding Scheme for Social i/abs/10.1145/3340531.3412016 Bo Jin, Ke Cheng, Liang Zhang, Yanjie Fu, Minghao Yin, Lu Jiang

HIGHLIGHT: To this end, we propose a partial relationship aware influence diffusion structure via a computationally efficient multi-channel encoding scheme.

60, TITLE: Social Factors in Closed-Network Content Consumption https://dl.acm.org/doi/abs/10.1145/3340531.3411935 AUTHORS: Parisa Kaghazgaran, Maarten Bos, Leonardo Neves, Neil Shah HIGHLIGHT: We propose models for patterns in users' time-spending behaviors across friends, and observe that viewers preferentially and consistently spend more time on content from certain friends, even without considering any explicit notion of intrinsic content value.
61, TITLE: DE-RRD: A Knowledge Distillation Framework for Recommender System https://dl.acm.org/doi/abs/10.1145/3340531.3412005 AUTHORS: SeongKu Kang, Junyoung Hwang, Wonbin Kweon, Hwanjo Yu HIGHLIGHT: In this paper, we propose a novel knowledge distillation framework for recommender system, called DE-RRD, which enables the student model to learn from the latent knowledge encoded in the teacher model as well as from the teacher's predictions.
62, TITLE:Collective Embedding with Feature Importance: A Unified Approach for Spatiotemporal Network Embedding https://dl.acm.org/doi/abs/10.1145/3340531.3412030AUTHORS:Dakshak Keerthi Chandra, Pengyang Wang, Jennifer Leopold, Yanjie Fu In this paper, we propose a collective embedding framework that leverages the use of auto-encoders and Laplacian score to learn effective embeddings of spatiotemporal networks of urban communities.
63, TITLE:AutoFeature: Searching for Feature Interactions and Their Architectures for Click-through Rate Predictionhttps://dl.acm.org/doi/abs/10.1145/3340531.3411912AUTHORS:Farhan Khawar, Xu Hang, Ruiming Tang, Bin Liu, Zhenguo Li, Xiuqiang HeHIGHLIGHT:To address these issues, we propose a neural architecture search based approach called AutoFeature thatautomatically finds essential feature interactions and selects an appropriate structure to model each of these interactions.
64, TITLE:Selecting Influential Features by a Learnable Content-Aware Linear Threshold Modelhttps://dl.acm.org/doi/abs/10.1145/3340531.3411886AUTHORS:Ansh Khurana, Alvis Logins, Panagiotis KarrasHIGHLIGHT:We propose a method that learns the parameters of the CALT model and adapt the SimPath diffusion estimationmethod to build a heuristic for the influential feature selection problem.
65, TITLE:Describing and Predicting Online Items with Reshare Cascades via Dual Mixture Self-exciting Processeshttps://dl.acm.org/doi/abs/10.1145/3340531.3411861AUTHORS:Quyu Kong, Marian-Andrei Rizoiu, Lexing XieHIGHLIGHT:This work addresses these shortcomings by proposing dual mixture self-exciting processes to jointly learn from groups of cascades.
66, TITLE:Extracting N-ary Facts from Wikipedia Table Clustershttps://dl.acm.org/doi/abs/10.1145/3340531.3412027AUTHORS:Benno Kruit, Peter Boncz, Jacopo UrbaniHIGHLIGHT:We propose a novel knowledge extraction technique that tackles these problems.
67, TITLE:Live Multi-Streaming and Donation Recommendations via Coupled Donation-Response Tensor Factorizationhttps://dl.acm.org/doi/abs/10.1145/3340531.3411925AUTHORS:Hsu-Chao Lai, Jui-Yi Tsai, Hong-Han Shuai, Jiun-Long Huang, Wang-Chien Lee, De-Nian YangHIGHLIGHT:In this paper, we introduce Multi-Stream Party (MSP) and formulate a new multi-streaming recommendationproblem, called Donation and MSP Recommendation (DAMRec).
68, TITLE: MERL: Multi-View Edge Representation Learning in Social Networks https://dl.acm.org/doi/abs/10.1145/3340531.3412049 AUTHORS: Yi-Yu Lai, Jennifer Neville HIGHLIGHT: In this paper, we propose a new methodology, MERL, that (1) captures asymmetry in multiple views by learning well-defined edge representations that are responsive to the difference between the source and destination node roles, and (2) incorporates textual communications to identify multiple source of social signals (e.g. strength and affinity) that moderate the impact of different views between users.

69, TITLE: Towards Temporal Knowledge Graph Embeddings with Arbitrary Time Precision https://dl.acm.org/doi/abs/10.1145/3340531.3412028

AUTHORS: HIGHLIGHT: granularity.	Julien Leblay, Melisachew Wudage Chekol, Xin Liu In this work, we introduce and evaluate an approach that gracefully adjusts to time validity of virtually any
70, TITLE: https://dl.acm.org/do AUTHORS: HIGHLIGHT: System(TEKGR).	News Recommendation with Topic-Enriched Knowledge Graphs i/abs/10.1145/3340531.3411932 Dongho Lee, Byungkook Oh, Seungmin Seo, Kyong-Ho Lee To cope with the above problem, in this paper, we propose Topic-Enriched Knowledge Graph Recommendation
71, TITLE:	Cross-sentence N-ary Relation Extraction using Entity Link and Discourse Relation
https://dl.acm.org/do	i/abs/10.1145/3340531.3412011
AUTHORS:	Sanghak Lee, Seungmin Seo, Byungkook Oh, Kyong-Ho Lee, Donghoon Shin, Yeonsoo Lee
HIGHLIGHT:	This paper presents an efficient method of extracting n-ary relations from multiple sentences which is called
Entity-path and Disco	ourse relation-centric Relation Extractor (EDCRE).
72, TITLE: https://dl.acm.org/do AUTHORS: HIGHLIGHT: intensive mode and d patterns from each m intensive mode.	Knowledge Adaption for Demand Prediction based on Multi-task Memory Neural Network i/abs/10.1145/3340531.3411965 Can Li, Lei Bai, Wei Liu, Lina Yao, S. Travis Waller As such, we propose to enhance the demand prediction of station-sparse modes with the data from station- lesign a Memory-Augmented Multi-task Re current Network (MATURE) to derive the transferable demand ode and boost the prediction of station-sparse modes through adapting the relevant patterns from the station-
73, TITLE:	Learning with Noisy Partial Labels by Simultaneously Leveraging Global and Local Consistencies
https://dl.acm.org/do	i/abs/10.1145/3340531.3411885
AUTHORS:	Changchun Li, Ximing Li, Jihong Ouyang
HIGHLIGHT:	To alleviate this problem, we propose a novel PL method, namely PArtial label learNing by simultaneously
leveraging GlObal ar	ad Local consIsteNcies (Pangolin).
74, TITLE:	Knowledge-Enhanced Personalized Review Generation with Capsule Graph Neural Network
https://dl.acm.org/do	i/abs/10.1145/3340531.3411893
AUTHORS:	Junyi Li, Siqing Li, Wayne Xin Zhao, Gaole He, Zhicheng Wei, Nicholas Jing Yuan, Ji-Rong Wen
HIGHLIGHT:	To address the above issues, we propose a novel knowledgeenhanced PRG model based on capsule graph
neural network (Caps	sGNN).
75, TITLE:	Seed-free Graph De-anonymiztiation with Adversarial Learning
https://dl.acm.org/do	i/abs/10.1145/3340531.3411970
AUTHORS:	Kaiyang Li, Guoming Lu, Guangchun Luo, Zhipeng Cai
HIGHLIGHT:	In this paper, a seed-free graph de-anonymization method is proposed, where a deep neural network is adopted
to learn features and	an adversarial framework is employed for node matching.
76, TITLE:	Generate Neural Template Explanations for Recommendation
https://dl.acm.org/do	i/abs/10.1145/3340531.3411992
AUTHORS:	Lei Li, Yongfeng Zhang, Li Chen
HIGHLIGHT:	In an attempt to benefit both sentence expressiveness and quality, we propose a Neural Template (NETE)
explanation generation	on framework, which brings the best of both worlds by learning sentence templates from data and generating
template-controlled s	entences that comment about specific features.
77, TITLE:	A Topic and Concept Integrated Model for Thread Recommendation in Online Health Communities
https://dl.acm.org/do	i/abs/10.1145/3340531.3411933
AUTHORS:	Mingda Li, Weiting Gao, Yi Chen
HIGHLIGHT:	To help users find relevant information easily, we present CLIR, an effective system for recommending relevant
discussion threads to	users in OHCs.
78, TITLE:	Trapping Malicious Crawlers in Social Networks
https://dl.acm.org/do	i/abs/10.1145/3340531.3412004
AUTHORS:	Shiju Li, Chul-Ho Lee, Do Young Eun
HIGHLIGHT:	In this paper, we study a problem of trapping malicious web crawlers in social networks to minimize the attacks
from crawlers with n	nalicious intents to steal personal/private information.

79, TITLE:	Deep Time-Aware Item Evolution Network for Click-Through Rate Prediction
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411952
AUTHORS:	Xiang Li, Chao Wang, Bin Tong, Jiwei Tan, Xiaoyi Zeng, Tao Zhuang
HIGHLIGHT:	In this work, we propose a CTR prediction model TIEN based on the time-aware item behavior.
80, TITLE: https://dl.acm.org/doi AUTHORS: HIGHLIGHT: ranking models.	Learning Better Representations for Neural Information Retrieval with Graph Information i/abs/10.1145/3340531.3411957 Xiangsheng Li, Maarten de Rijke, Yiqun Liu, Jiaxin Mao, Weizhi Ma, Min Zhang, Shaoping Ma In this study, we aim to incorporate this rich information encoded in these two graphs into existing neural
81, TITLE:	Cooperative Multi-Agent Reinforcement Learning in Express System
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411871
AUTHORS:	Yexin Li, Yu Zheng, Qiang Yang
HIGHLIGHT:	In this paper, we propose a reinforcement learning based framework to learn courier dispatching policies.
82, TITLE:	Meta-Learning for Neural Relation Classification with Distant Supervision
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412039
AUTHORS:	Zhenzhen Li, Jian-Yun Nie, Benyou Wang, Pan Du, Yuhan Zhang, Lixin Zou, Dongsheng Li
HIGHLIGHT:	In this paper, we propose a meta-learning based approach, which learns to reweight noisy training data under
the guidance of refere	ence data.
83, TITLE: Analysis https://dl.acm.org/doi AUTHORS: HIGHLIGHT: invariant/dependent s	Aspect-invariant Sentiment Features Learning: Adversarial Multi-task Learning for Aspect-based Sentiment i/abs/10.1145/3340531.3411868 Bin Liang, Rongdi Yin, Lin Gui, Jiachen Du, Yulan He, Ruifeng Xu Hence, in this paper, we propose an Adversarial Multi-task Learning framework to identify the aspect- sentiment expressions without extra annotations.
84, TITLE:	Attributed Network Embedding based on Mutual Information Estimation
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412008
AUTHORS:	Xiaomin Liang, Daifeng Li, Andrew Madden
HIGHLIGHT:	We attempt to use local embeddings to represent local aspect information and propose InfomaxANE which
encodes both global a	and local embeddings from the perspective of mutual information.
85, TITLE: Recommendation https://dl.acm.org/doi AUTHORS: Varadarajan HIGHLIGHT: UDGAT), a novel exp spatial-temporal-prefe	STP-UDGAT: Spatial-Temporal-Preference User Dimensional Graph Attention Network for Next POI i/abs/10.1145/3340531.3411876 Nicholas Lim, Bryan Hooi, See-Kiong Ng, Xueou Wang, Yong Liang Goh, Renrong Weng, Jagannadan In this work, we propose a Spatial-Temporal-Preference User Dimensional Graph Attention Network (STP- plore-exploit model that concurrently exploits personalized user preferences and explores new POIs in global erence (STP) neighbourhoods, while allowing users to selectively learn from other users.
86, TITLE:	Attacking Recommender Systems with Augmented User Profiles
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411884
AUTHORS:	Chen Lin, Si Chen, Hui Li, Yanghua Xiao, Lianyun Li, Qian Yang
HIGHLIGHT:	In this paper, we study the shilling attack: a subsistent and profitable attack where an adversarial party injects a
number of user profil	es to promote or demote a target item.
87, TITLE:	Jointly Modeling Individual Student Behaviors and Social Influence for Prediction Tasks
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411961
AUTHORS:	Haobing Liu, Yanmin Zhu, Tianzi Zang, Jiadi Yu, Haibin Cai
HIGHLIGHT:	In this paper, we aim to propose a general deep neural network which can jointly model student heterogeneous
daily behaviors gener	rated from digital footprints and social influence to deal with prediction tasks.
88, TITLE:	Fusing Parallel Social Contexts within Flexible-Order Proximity for Microblog Topic Detection
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412024
AUTHORS:	Hongyu Liu, Ruifang He, Haocheng Wang, Bo Wang

HIGHLIGHT: To this end, we propose a novel random walk based Parallel Social Contexts Fusion Topic Model (PCFTM) for weibo conversations.

89, TITLE: Cross Domain Recommendation via Bi-directional Transfer Graph Collaborative Filtering Networks https://dl.acm.org/doi/abs/10.1145/3340531.3412012 AUTHORS: Meng Liu, Jianjun Li, Guohui Li, Peng Pan HIGHLIGHT: In this paper, we propose a novel Bi-directional Transfer learning method for cross-domain recommendation by using Graph Collaborative Filtering network as the base model (BiTGCF).
90, TITLE:Explainable Recommender Systems via Resolving Learning Representationshttps://dl.acm.org/doi/abs/10.1145/3340531.3411919AUTHORS:Ninghao Liu, Yong Ge, Li Li, Xia Hu, Rui Chen, Soo-Hyun ChoiHIGHLIGHT:In this paper, after formally introducing the elements that are related to model explainability, we propose anovel explainable recommendation model through improving the transparency of the representation learning process.
91, TITLE:Deep Spatio-Temporal Multiple Domain Fusion Network for Urban Anomalies Detectionhttps://dl.acm.org/doi/abs/10.1145/3340531.3411920AUTHORS:Ruiqiang Liu, Shuai Zhao, Bo Cheng, Hao Yang, Haina Tang, Taoyu LiHIGHLIGHT:In this paper, we propose a novel end-to-end deep learning based framework, namely deep spatio-temporalmultiple domain fusion network to collect the impacts of urban anomalies on multiple datasets and detect anomalies in each region ofthe city at next time interval in turn.
92, TITLE: Structural Relationship Representation Learning with Graph Embedding for Personalized Product Search https://dl.acm.org/doi/abs/10.1145/3340531.3411936 AUTHORS: Shang Liu, Wanli Gu, Gao Cong, Fuzheng Zhang HIGHLIGHT: In this work, we propose to consider structural relationship in users' product search scenario with graph embedding by latent representation learning.
93, TITLE:Personalized Re-ranking with Item Relationships for E-commercehttps://dl.acm.org/doi/abs/10.1145/3340531.3412332AUTHORS:Weiwen Liu, Qing Liu, Ruiming Tang, Junyang Chen, Xiuqiang He, Pheng Ann HengHIGHLIGHT:We develop a graph neural network based framework, IRGPR, to explicitly model transitive item relationshipsby recursively aggregating relational information from multi-hop neighborhoods.
94, TITLE:An NVM SSD-Optimized Query Processing Frameworkhttps://dl.acm.org/doi/abs/10.1145/3340531.3412010AUTHORS:Xinyu Liu, Yu Pan, Yusen Li, Gang Wang, Xiaoguang LiuHIGHLIGHT:In this paper, we propose an NVM SSD-optimized query processing framework, aiming to address both thelatency and bandwidth issues of using NVM in search engines.
95, TITLE: Shapley Values and Meta-Explanations for Probabilistic Graphical Model Inference https://dl.acm.org/doi/abs/10.1145/3340531.3411881 AUTHORS: Yifei Liu, Chao Chen, Yazheng Liu, Xi Zhang, Sihong Xie HIGHLIGHT: As brute-force computation of the Shapley values is challenging, we propose GraphShapley, an approximation algorithm that exploits the decomposability of Shapley values, the structure of MRFs, and the iterative nature of BP inference to speed up the computation.
96, TITLE: Recommending Inferior Results: A General and Feature-Free Model for Spam Detection https://dl.acm.org/doi/abs/10.1145/3340531.3411900 AUTHORS: Yuli Liu HIGHLIGHT: To further boost detection performance, we incorporate the pairwise ranking detection method and the widely used structure-based algorithm into an integrated framework.
97, TITLE:Towards Locality-Aware Meta-Learning of Tail Node Embeddings on Networkshttps://dl.acm.org/doi/abs/10.1145/3340531.3411910AUTHORS:Zemin Liu, Wentao Zhang, Yuan Fang, Xinming Zhang, Steven C.H. HoiHIGHLIGHT:To reduce overfitting in the personalization, we propose a locality-aware meta-learning framework, called meta-tail2vec, which learns to learn the regression model for the tail nodes at different localities.
98, TITLE: Feature Fusion Based Subgraph Classification for Link Prediction

https://dl.acm.org/doi/abs/10.1145/33 AUTHORS: Zheyi Liu, Dar HIGHLIGHT: In this study, w	40531.3411966 ong Lai, Chuanyou Li, Meng Wang /e established the Subgraph Hierarchy Feature Fusion (SHFF) model for link prediction.
99, TITLE: Fast Attributed https://dl.acm.org/doi/abs/10.1145/33 AUTHORS: Zhijun Liu, Ch HIGHLIGHT: In this work, w for large-scale network data, by mapp and relations) into the same latent spa	Multiplex Heterogeneous Network Embedding 40531.3411944 ao Huang, Yanwei Yu, Baode Fan, Junyu Dong e propose a Fast Attributed Multiplex heterogeneous network Embedding framework (FAME) sing the units from different modalities (i.e., network topological structures, various node features ace in a very efficient way.
100, TITLE:Dynamic Reprhttps://dl.acm.org/doi/abs/10.1145/33AUTHORS:Zhijun Liu, ChHIGHLIGHT:In this work, wframework for large-scale Attributed	esentation Learning for Large-Scale Attributed Networks 40531.3411945 ao Huang, Yanwei Yu, Peng Song, Baode Fan, Junyu Dong e address these challenges by developing the DRLAN-Dynamic Representation Learning Networks.
101, TITLE:Dual Head-wishttps://dl.acm.org/doi/abs/10.1145/33AUTHORS:Zhuang Liu, KHIGHLIGHT:In this paper, wsimple and efficient attention neural not set to the set of the	e Coattention Network for Machine Comprehension with Multiple-Choice Questions 40531.3412013 aiyu Huang, Degen Huang, Zhuang Liu, Jun Zhao 7e present a novel architecture, Dual Head-wise Coattention network (called DHC), which is a network designed to perform multiple-choice MC task.
102, TITLE:Spatiotemporahttps://dl.acm.org/doi/abs/10.1145/33AUTHORS:Bin Lu, XiaoyiHIGHLIGHT:In this paper, vgraph by seeking both spatial neighbor	Adaptive Gated Graph Convolution Network for Urban Traffic Flow Forecasting 40531.3411894 ng Gan, Haiming Jin, Luoyi Fu, Haisong Zhang ve exploit spatiotemporal correlation of urban traffic flow and construct a dynamic weighted ors and semantic neighbors of road nodes.
103, TITLE:Probabilistic Dhttps://dl.acm.org/doi/abs/10.1145/33AUTHORS:Chien Lu, JaakHIGHLIGHT:We introduce anonnegative data such as text data word	ynamic Non-negative Group Factor Model for Multi-source Text Mining 40531.3411956 ko Peltonen, Jyrki Nummenmaa, Kalervo Järvelin probabilistic, Gaussian Process-based, more inclusive NMF-based model which jointly analyzes ord content from multiple sources in a temporal dynamic manner.
104, TITLE:Hierarchical Ahttps://dl.acm.org/doi/abs/10.1145/33AUTHORS:Zhipeng Luo, IHIGHLIGHT:To minimize thlearning solution that aims at increment	ctive Learning with Overlapping Regions 40531.3412022 Vilos Hauskrecht ne number and complexity of region-based queries, we propose and develop a hierarchical active entally building a concise hierarchy of regions.
105, TITLE: Adaptive-Step https://dl.acm.org/doi/abs/10.1145/33 AUTHORS: Ning Ma, Jiaju HIGHLIGHT: More specifica based modules for fast adaptation on provide quantitative analysis for the f framework; (3) the extensive experim several few-shot graph classification	Graph Meta-Learner for Few-Shot Graph Classification 40531.3411951 n Bu, Jieyu Yang, Zhen Zhang, Chengwei Yao, Zhi Yu, Sheng Zhou, Xifeng Yan lly, (1) we propose a novel framework consisting of a graph meta-learner, which uses GNNs graph data, and a step controller for the robustness and generalization of meta-learner; (2) we ramework and give a graph-dependent upper bound of the generalization error based on our tents on real-world datasets demonstrate that our framework gets state-of-the-art results on tasks compared to baselines.
106, TITLE: Feature Selecti	on on Data Stream via Multi-Cluster Structure Preservation

https://dl.acm.org/doi/abs/10.1145/3340531.3411928 AUTHORS: Rui Ma, Yijie Wang, Li Cheng HIGHLIGHT: To address this issue, we propose an online unsupervised Feature Selection method via Multi-Cluster structure Preservation (FSMCP for short).

107, TITLE:PSTIE: Time Information Enhanced Personalized Searchhttps://dl.acm.org/doi/abs/10.1145/3340531.3411877AUTHORS:Zhengyi Ma, Zhicheng Dou, Guanyue Bian, Ji-Rong WenHIGHLIGHT:In this paper, we propose PSTIE, a fine-grained Time Information Enhanced model to construct more accurateuser interest representations for Personalized Search.

https://dl.acm.org/doi/abs/10.1145/3340531.3412000 AUTHORS: Joel Mackenzie, Alistair Moffat HIGHLIGHT: We employ four query processing algorithms, four compression codecs, and all possible combinations of four distinct further optimizations, and compare the performance of the 256 resulting systems to determine when and how different optimizations interact. 109, TITLE: Relational Reflection Entity Alignment https://dl.acm.org/doi/abs/10.1145/3340531.3412001 AUTHORS: Xin Mao, Wenting Wang, Huimin Xu, Yuanbin Wu, Man Lan In this paper, we abstract existing entity alignment methods into a unified framework, Shape-Builder & amp; HIGHLIGHT Alignment, which not only successfully explains the above phenomena but also derives two key criteria for an ideal transformation operation. 110, TITLE: CSNE: Conditional Signed Network Embedding https://dl.acm.org/doi/abs/10.1145/3340531.3411959 AUTHORS: Alexandru Mara, Yoosof Mashayekhi, Jefrey Lijffijt, Tijl de Bie HIGHLIGHT: In this context, we introduce conditional signed network embedding (CSNE). 111, TITLE: Learning to Distract: A Hierarchical Multi-Decoder Network for Automated Generation of Long Distractors for Multiple-Choice Questions for Reading Comprehension https://dl.acm.org/doi/abs/10.1145/3340531.3411997 AUTHORS: Kaushal Kumar Maurya, Maunendra Sankar Desarkar HIGHLIGHT: In this paper, we propose a novel Hierarchical Multi-Decoder Network (HMD-Net) consisting of one encoder and three decoders, where each decoder generates a single distractor. 112, TITLE: "Keep it Simple, Lazy" -- MetaLazy: A New MetaStrategy for Lazy Text Classification https://dl.acm.org/doi/abs/10.1145/3340531.3412180 AUTHORS: Luiz Felipe Mendes, Marcos Gonçalves, Washington Cunha, Leonardo Rocha, Thierson Couto-Rosa, Wellington Martins HIGHLIGHT: We propose a shift in the paradigm to do "more with less" by focusing, at maximum extent, just on the task at hand (e.g., classify a single test instance). 113, TITLE: A Methodology Based on Deep Q-Learning/Genetic Algorithms for Optimizing COVID-19 Pandemic Government Actions https://dl.acm.org/doi/abs/10.1145/3340531.3412179 AUTHORS: Luis Miralles-Pechuán, Fernando Jiménez, Hiram Ponce, L. Martínez-Villaseñor HIGHLIGHT: To optimize the best sequences of actions governments can take, we propose a methodology with two approaches, one based on Deep Q-Learning and another one based on Genetic Algorithms. 114, TITLE: SWE2: SubWord Enriched and Significant Word Emphasized Framework for Hate Speech Detection https://dl.acm.org/doi/abs/10.1145/3340531.3411990 Guanyi Mou, Pengyi Ye, Kyumin Lee AUTHORS: HIGHLIGHT: In this paper, we address the hate speech problem and propose a novel hate speech detection framework called SWE2, which only relies on the content of messages and automatically identifies hate speech. 115, TITLE: Deep Generative Positive-Unlabeled Learning under Selection Bias https://dl.acm.org/doi/abs/10.1145/3340531.3411971 Byeonghu Na, Hyemi Kim, Kyungwoo Song, Weonyoung Joo, Yoon-Yeong Kim, Il-Chul Moon AUTHORS: HIGHLIGHT: Therefore, we introduce the VAE-PU, which is a variant of variational autoencoders to separate two latent variables that generate either features or observation indicators. FANG: Leveraging Social Context for Fake News Detection Using Graph Representation 116, TITLE:

Examining the Additivity of Top-k Query Processing Innovations

108, TITLE:

https://dl.acm.org/doi/abs/10.1145/3340531.3412046 AUTHORS: Van-Hoang Nguyen, Kazunari Sugiyama, Preslav Nakov, Min-Yen Kan HIGHLIGHT: We propose Factual News Graph (FANG), a novel graphical social context representation and learning framework for fake news detection.

117, TITLE: Uncovering Semantic Bias in Neural Network Models Using a Knowledge Graph

https://dl.acm.org/doi	i/abs/10.1145/3340531.3412009
AUTHORS:	Andriy Nikolov, Mathieu d'Aquin
HIGHLIGHT:	In this paper we apply rule mining using knowledge graphs in combination with neural network explanation
methods to uncover s	such systematic preferences of trained neural models and capture them in the form of conjunctive rules.
118, TITLE: https://dl.acm.org/doi AUTHORS: HIGHLIGHT: flows.	STP-TrellisNets: Spatial-Temporal Parallel TrellisNets for Metro Station Passenger Flow Prediction i/abs/10.1145/3340531.3411874 Junjie Ou, Jiahui Sun, Yichen Zhu, Haiming Jin, Yijuan Liu, Fan Zhang, Jianqiang Huang, Xinbing Wang Thus, in this paper, we aim to address the problem of accurately predicting metro station passenger (MSP)
119, TITLE: https://dl.acm.org/doi AUTHORS: HIGHLIGHT: recommendation.	Star Graph Neural Networks for Session-based Recommendation i/abs/10.1145/3340531.3412014 Zhiqiang Pan, Fei Cai, Wanyu Chen, Honghui Chen, Maarten de Rijke We propose Star Graph Neural Networks with Highway Networks (SGNN-HN) for session-based
120, TITLE:	RKT: Relation-Aware Self-Attention for Knowledge Tracing
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411994
AUTHORS:	Shalini Pandey, Jaideep Srivastava
HIGHLIGHT:	In this paper, we propose a novel Relation-aware self-attention model for Knowledge Tracing (RKT).
121, TITLE: Changing Road Spee https://dl.acm.org/doi AUTHORS: Choo HIGHLIGHT: temporal dynamics ir	ST-GRAT: A Novel Spatio-temporal Graph Attention Networks for Accurately Forecasting Dynamically d i/abs/10.1145/3340531.3411940 Cheonbok Park, Chunggi Lee, Hyojin Bahng, Yunwon Tae, Seungmin Jin, Kihwan Kim, Sungahn Ko, Jaegul This paper proposes a novel spatio-temporal graph attention (ST-GRAT) that effectively captures the spatio- n road networks.
122, TITLE:	Minimal Edit-Based Diffs for Large Trees
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412026
AUTHORS:	Mateusz Pawlik, Nikolaus Augsten
HIGHLIGHT:	In this paper, we leverage the fact that the difference between two versions of a tree is typically much smaller
than the overall tree s	size.
123, TITLE:	Efficient Detection of Data Dependency Violations
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412062
AUTHORS:	Eduardo H. M. Pena, Edson R. Lucas Filho, Eduardo C. de Almeida, Felix Naumann
HIGHLIGHT:	We describe its execution model, which operates on a compressed block of tuples at-a-time, and we present
various algorithms th	at take advantage of the predicate form in the DCs to provide effective code patterns.
124, TITLE: Disasters https://dl.acm.org/doi AUTHORS: HIGHLIGHT: classify infrastructure	EnDeA: Ensemble based Decoupled Adversarial Learning for Identifying Infrastructure Damage during i/abs/10.1145/3340531.3412020 Shalini Priya, Apoorva Upadhyaya, Manish Bhanu, Sourav Kumar Dandapat, Joydeep Chandra In this paper we introduce an Ensemble learning approach with a Decoupled Adversarial (EnDeA) model to e damage tweets in a target tweet dataset.
125, TITLE:	G-CREWE: Graph CompREssion With Embedding for Network Alignment
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411924
AUTHORS:	Kyle K. Qin, Flora D. Salim, Yongli Ren, Wei Shao, Mark Heimann, Danai Koutra
HIGHLIGHT:	In this paper, we propose a framework, called G-CREWE (Graph CompREssion With Embedding) to solve the
network alignment pr	roblem.
126, TITLE:	Diversifying Search Results using Self-Attention Network
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411914
AUTHORS:	Xubo Qin, Zhicheng Dou, Ji-Rong Wen
HIGHLIGHT:	In this paper, we propose a new supervised diversification framework to address this issue.

127, TITLE: Crowdsourcing	Time-Efficient Geo-Obfuscation to Protect Worker Location Privacy over Road Networks in Spatial
AUTHORS: HIGHLIGHT:	Chenxi Qiu, Anna Squicciarini, Zhouzhao Li, Ce Pang, Li Yan In this paper, we tackle the SC worker location privacy problem over road networks.
128, TITLE: https://dl.acm.org/do	Hierarchical Query Graph Generation for Complex Question Answering over Knowledge Graph
AUTHORS: HIGHLIGHT:	Yunqi Qiu, Kun Zhang, Yuanzhuo Wang, Xiaolong Jin, Long Bai, Saiping Guan, Xueqi Cheng This paper proposes a Director-Actor-Critic framework to overcome these challenges.
129, TITLE: https://dl.acm.org/do	Robust Irregular Tensor Factorization and Completion for Temporal Health Data Analysis i/abs/10.1145/3340531.3411982
AUTHORS: HIGHLIGHT: completion method,	Yifei Ren, Jian Lou, Li Xiong, Joyce C. Ho We propose REPAIR, a Robust tEmporal PARAFAC2 method for IRregular tensor factorization and to complete an irregular tensor and extract phenotypes in the presence of missing and erroneous values.
130, TITLE: https://dl.acm.org/do	The COVID-19 Infodemic: Can the Crowd Judge Recent Misinformation Objectively?
AUTHORS: Stefano Mizzaro, Gia	Kevin Roitero, Michael Soprano, Beatrice Portelli, Damiano Spina, Vincenzo Della Mea, Giuseppe Serra, Inluca Demartini
HIGHLIGHT: the study and has arg term "infodem	We specifically target statements related to the COVID-19 health emergency, that is still ongoing at the time of quably caused an increase of the amount of misinformation that is spreading online (a phenomenon for which the ic" has been used).
131, TITLE:	ZSCRGAN: A GAN-based Expectation Maximization Model for Zero-Shot Retrieval of Images from Textual
https://dl.acm.org/do	i/abs/10.1145/3340531.3411995 Anurag Roy, Vinay Kumar Verma, Krinabandhu Ghosh, Santarshi Ghosh
HIGHLIGHT:	In this paper, we propose a novel GAN-based model for zero-shot text to image retrieval.
132, TITLE: https://dl.acm.org/do	Characteristic Functions on Graphs: Birds of a Feather, from Statistical Descriptors to Parametric Models i/abs/10.1145/3340531.3411866
HIGHLIGHT: distribution of vertex	In this paper, we propose a flexible notion of characteristic functions defined on graph vertices to describe the features at multiple scales.
133, TITLE: https://dl.acm.org/do	A GAN-based Framework for Modeling Hashtag Popularity Dynamics Using Assistive Information i/abs/10.1145/3340531.3412025
AUTHORS: HIGHLIGHT: seamlessly incorpora trends.	Avirup Saha, Niloy Ganguly In this paper, we propose a marked TPP based on Generative Adversarial Networks (GANs) which can te the assistive information necessary to capture the above effects and successfully forecast distant popularity
134, TITLE: https://dl.acm.org/do	Index Obfuscation for Oblivious Document Retrieval in a Trusted Execution Environment
AUTHORS: HIGHLIGHT: bucketing and docun	Jinjin Shao, Shiyu Ji, Alvin Oliver Glova, Yifan Qiao, Tao Yang, Tim Sherwood This paper proposes an efficiency-enhanced design that obfuscates the inverted index structure with posting nent ID masking, which aims to hide document-term association and avoid the access pattern leakage.
135, TITLE: Crowdsourcing	Auxiliary-task Based Deep Reinforcement Learning for Participant Selection Problem in Mobile
https://dl.acm.org/do AUTHORS: HIGHLIGHT: propose to solve it w	I/abs/10.1145/3340531.3411913 Wei Shen, Xiaonan He, Chuheng Zhang, Qiang Ni, Wanchun Dou, Yan Wang To deal with this issue, we formulate the participant selection problem as a reinforcement learning problem and ith a novel method, which we call auxiliary-task based deep reinforcement learning (ADRL).
136, TITLE:	Neural Logic Reasoning

https://dl.acm.org/doi/abs/10.1145/3340531.3411949 AUTHORS: Shaoyun Shi, Hanxiong Chen, Weizhi Ma, Jiaxin Mao, Min Zhang, Yongfeng Zhang

HIGHLIGHT: logic reasoning.	In this paper, we propose Logic-Integrated Neural Network (LINN) to integrate the power of deep learning and
137, TITLE:	METEOR: Learning Memory and Time Efficient Representations from Multi-modal Data Streams
https://dl.acm.org/doi	//abs/10.1145/3340531.3411991
AUTHORS:	Amila Silva, Shanika Karunasekera, Christopher Leckie, Ling Luo
HIGHLIGHT:	These studies aim to understand higher-level contextual information (e.g., a Twitter message) by jointly
learning embeddings	for the lower-level semantic units in different modalities (e.g., text, user, and location of a Twitter message).
138, TITLE:	Carpe Diem, Seize the Samples Uncertain "at the Moment" for Adaptive Batch Selection
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411898
AUTHORS:	Hwanjun Song, Minseok Kim, Sundong Kim, Jae-Gil Lee
HIGHLIGHT:	In this paper, we propose a novel adaptive batch selection algorithm called Recency Bias that exploits the
uncertain samples pre	edicted inconsistently in recent iterations.
139, TITLE:	Continual Domain Adaptation for Machine Reading Comprehension
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412047
AUTHORS:	Lixin Su, Jiafeng Guo, Ruqing Zhang, Yixing Fan, Yanyan Lan, Xueqi Cheng
HIGHLIGHT:	To tackle the CDA task, we propose several BERT-based continual learning MRC models using either
regularization-based r	methodology or dynamic-architecture paradigm.
140, TITLE:	Multi-modal Knowledge Graphs for Recommender Systems
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411947
AUTHORS:	Rui Sun, Xuezhi Cao, Yan Zhao, Junchen Wan, Kun Zhou, Fuzheng Zhang, Zhongyuan Wang, Kai Zheng
HIGHLIGHT:	In this paper, we propose Multi-modal Knowledge Graph Attention Network (MKGAT) to better enhance
recommender system	s by leveraging multi-modal knowledge.
141, TITLE:	Anomaly Subgraph Detection with Feature Transfer
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411968
AUTHORS:	Ying Sun, Wenjun Wang, Nannan Wu, Wei Yu, Xue Chen
HIGHLIGHT:	In this paper, to detect anomaly in a graph with insufficient anomalous features, we propose a pioneering
approach ASD-FT (A	Anomaly Subgraph Detection with Feature Transfer) based on a strategy of anomalous feature transfers between
different layers of a n	nultilayer graph.
142, TITLE:	OHEA: Secure Data Aggregation in Wireless Sensor Networks against Untrusted Sensors
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412045
AUTHORS:	Li Tang, Haibo Hu
HIGHLIGHT:	This paper proposes Onion Homomorphic Encryption-based Aggregation (OHEA), where sources form groups
with their dedicated e	encryption keys, a.k.a., the group keys.
143, TITLE: https://dl.acm.org/doi AUTHORS: Wang HIGHLIGHT:	Investigating and Mitigating Degree-Related Biases in Graph Convoltuional Networks i/abs/10.1145/3340531.3411872 Xianfeng Tang, Huaxiu Yao, Yiwei Sun, Yiqi Wang, Jiliang Tang, Charu Aggarwal, Prasenjit Mitra, Suhang In this paper, we analyze GCNs in regard to the node degree distribution.
144, TITLE:	QSAN: A Quantum-probability based Signed Attention Network for Explainable False Information Detection
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411890
AUTHORS:	Tian Tian, Yudong Liu, Xiaoyu Yang, Yuefei Lyu, Xi Zhang, Binxing Fang
HIGHLIGHT:	In this paper, we focus on how to learn from the post contents and related comments in social media to
understand and detect	t the false information more effectively, with explainability.
145, TITLE:	Quaternion-Based Self-Attentive Long Short-term User Preference Encoding for Recommendation
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411926
AUTHORS:	Thanh Tran, Di You, Kyumin Lee
HIGHLIGHT:	In this paper, we fully utilize Quaternion space to model both user's long-term and short-term preferences.
146, TITLE:	E-Commerce Dispute Resolution Prediction
https://dl.acm.org/doi	i/abs/10.1145/3340531.3411906
AUTHORS:	David Tsurel, Michael Doron, Alexander Nus, Arnon Dagan, Ido Guy, Dafna Shahaf

HIGHLIGHT:	In this work we take a first step towards automatically assisting human agents in dispute resolution at scale.
147, TITLE:	When Inverse Propensity Scoring does not Work: Affine Corrections for Unbiased Learning to Rank
https://dl.acm.org/do	i/abs/10.1145/3340531.3412031
AUTHORS:	Ali Vardasbi, Harrie Oosterhuis, Maarten de Rijke
HIGHLIGHT:	Our main contribution is a new estimator based on affine corrections: it both reweights clicks and penalizes
items displayed on ra	anks with high trust bias.
148, TITLE:	A Graph Matching Attack on Privacy-Preserving Record Linkage
https://dl.acm.org/do	i/abs/10.1145/3340531.3411931
AUTHORS:	Anushka Vidanage, Peter Christen, Thilina Ranbaduge, Rainer Schnell
HIGHLIGHT:	In this paper we present a novel attack on PPRL methods that exploits the approximate similarities calculated
between encoded rec	ords.
149, TITLE:	Semi-Supervised Max-Sum Clustering
https://dl.acm.org/do	i/abs/10.1145/3340531.3411896
AUTHORS:	Konstantin Voevodski
HIGHLIGHT:	We present computational experiments to show that our framework is effective for clustering text data - we are
able to find clustering	gs that are close to the queried clustering and have a good objective value.
150, TITLE:	Efficient Sampling Algorithms for Approximate Temporal Motif Counting
https://dl.acm.org/do	i/abs/10.1145/3340531.3411862
AUTHORS:	Jingjing Wang, Yanhao Wang, Wenjun Jiang, Yuchen Li, Kian-Lee Tan
HIGHLIGHT:	In this paper, we focus on approximate temporal motif counting via random sampling.
151, TITLE:	Streaming Graph Neural Networks via Continual Learning
https://dl.acm.org/do	i/abs/10.1145/3340531.3411963
AUTHORS:	Junshan Wang, Guojie Song, Yi Wu, Liang Wang
HIGHLIGHT:	In this paper, we propose a streaming GNN model based on continual learning so that the model is trained
incrementally and up	b-to-date node representations can be obtained at each time step.
152, TITLE:	Soap: Soaking Capacity Optimization for Multi-Document Summarization
https://dl.acm.org/do	i/abs/10.1145/3340531.3411909
AUTHORS:	Kexiang Wang, Baobao Chang, Zhifang Sui
HIGHLIGHT:	In this paper, we consider the MDS task as an optimization problem with a novel measure named soaking
capacity being the ob	ojective function.
153, TITLE: https://dl.acm.org/do AUTHORS: HIGHLIGHT: of infrequent ones.	Mining Infrequent High-Quality Phrases from Domain-Specific Corpora i/abs/10.1145/3340531.3412029 Li Wang, Wei Zhu, Sihang Jiang, Sheng Zhang, Keqiang Wang, Yuan Ni, Guotong Xie, Yanghua Xiao In this paper, we focus on mining high-quality phrases from domain-specific corpora with special consideration
154, TITLE:	Graph Few-shot Learning with Attribute Matching
https://dl.acm.org/do	i/abs/10.1145/3340531.3411923
AUTHORS:	Ning Wang, Minnan Luo, Kaize Ding, Lingling Zhang, Jundong Li, Qinghua Zheng
HIGHLIGHT:	To tackle the aforementioned problem, we propose a novel graph meta-learning frameworkAttribute Matching
Meta-learning Graph	Neural Networks (AMM-GNN).
155, TITLE:	Multi-task Adversarial Spatial-Temporal Networks for Crowd Flow Prediction
https://dl.acm.org/do	i/abs/10.1145/3340531.3412054
AUTHORS:	Senzhang Wang, Hao Miao, Hao Chen, Zhiqiu Huang
HIGHLIGHT:	In this paper, we study the novel problem of predicting the crowd flow and flow OD simultaneously, and
propose a multi-task	adversarial spatial-temporal network model entitled MT-ASTN to effectively address it.
156, TITLE: Classification https://dl.acm.org/do AUTHORS:	Negative Confidence-Aware Weakly Supervised Binary Classification for Effective Review Helpfulness i/abs/10.1145/3340531.3411978 Xi Wang, Iadh Ounis, Craig Macdonald

HIGHLIGHT: In this work, we propose a novel Negative Confidence-aware Weakly Supervised approach (NCWS), which customises a binary classification loss function by discriminating the unlabelled examples with different negative confidences during the classifier's training.

 157, TITLE:
 Fast Graph Convolution Network Based Multi-label Image Recognition via Cross-modal Fusion

 https://dl.acm.org/doi/abs/10.1145/3340531.3411880

 AUTHORS:
 Yangtao Wang, Yanzhao Xie, Yu Liu, Ke Zhou, Xiaocui Li

 HIGHLIGHT:
 To overcome this shortcoming, in this paper, we introduce Multi-modal Factorized Bilinear pooling (MFB)

 which works as an efficient component to fuse cross-modal embeddings and propose F-GCN, a fast graph convolution network (GCN)

 based multi-label image recognition model.

158, TITLE:Bringing Order to Network Embedding: A Relative Ranking based Approachhttps://dl.acm.org/doi/abs/10.1145/3340531.3412041AUTHORS:Yaojing Wang, Guosheng Pan, Yuan Yao, Hanghang Tong, Hongxia Yang, Feng Xu, Jian LuHIGHLIGHT:In this paper, we propose to go beyond such pointwise approaches, and introduce the ranking-oriented designprinciple for network embedding.

 159, TITLE:
 Efficient Knowledge Graph Validation via Cross-Graph Representation Learning

 https://dl.acm.org/doi/abs/10.1145/3340531.3411902

 AUTHORS:
 Yaqing Wang, Fenglong Ma, Jing Gao

 HIGHLIGHT:
 Towards effective KG validation, we propose to leverage an external human-curated KG as auxiliary

 information source to help detect the errors in a target KG.

160, TITLE:DisenHAN: Disentangled Heterogeneous Graph Attention Network for Recommendationhttps://dl.acm.org/doi/abs/10.1145/3340531.3411996AUTHORS:Yifan Wang, Suyao Tang, Yuntong Lei, Weiping Song, Sheng Wang, Ming ZhangHIGHLIGHT:In this paper, we propose a novel disentangled heterogeneous graph attention network DisenHAN for top-N

recommendation, which learns disentangled user/item representations from different aspects in a heterogeneous information network.

161, TITLE: Succinct Adaptive Manifold Transfer

https://dl.acm.org/doi/abs/10.1145/3340531.3411921

AUTHORS: Pengfei Wei, Yiping Ke, Zhiqiang Xu, Tze Yun Leong

HIGHLIGHT: In this paper, we propose an effective and efficient Gaussian process (GP) modelling framework, mTGPmk, that can explicitly model domain relatedness and adaptively control the space as well as the strength of knowledge transfer.

 162, TITLE:
 Personalized Imputation on Wearable-Sensory Time Series via Knowledge Transfer

 https://dl.acm.org/doi/abs/10.1145/3340531.3411879

 AUTHORS:
 Xian Wu, Stephen Mattingly, Shayan Mirjafari, Chao Huang, Nitesh V. Chawla

 HIGHLIGHT:
 To address the limitation, this work develops a new imputation framework-Personalized Wearable-Sensory

 Time Series Imputation framework (PTSI) to provide a fully personalized treatment for time series imputation via effective knowledge

 163, TITLE:
 Providing Direct Answers in Search Results: A Study of User Behavior

 https://dl.acm.org/doi/abs/10.1145/3340531.3412017

 AUTHORS:
 Zhijing Wu, Mark Sanderson, B. Barla Cambazoglu, W. Bruce Croft, Falk Scholer

 HIGHLIGHT:
 To study the impact of providing direct answers in search results on user behavior, we conducted a controlled

user study to analyze factors including reading time, eye-tracked attention, and the influence of the quality of answer module content.

 164, TITLE:
 CAFE: Coarse-to-Fine Neural Symbolic Reasoning for Explainable Recommendation

 https://dl.acm.org/doi/abs/10.1145/3340531.3412038

 AUTHORS:
 Yikun Xian, Zuohui Fu, Handong Zhao, Yingqiang Ge, Xu Chen, Qiaoying Huang, Shijie Geng, Zhou Qin,

 Gerard de Melo, S. Muthukrishnan, Yongfeng Zhang

HIGHLIGHT: To this end, we propose a CoArse-to-FinE neural symbolic reasoning approach (CAFE).

165, TITLE: OPHiForest: Order Preserving Hashing Based Isolation Forest for Robust and Scalable Anomaly Detection https://dl.acm.org/doi/abs/10.1145/3340531.3411988

AUTHORS:Haolong Xiang, Zoran Salcic, Wanchun Dou, Xiaolong Xu, Lianyong Qi, Xuyun ZhangHIGHLIGHT:In this paper, we propose a novel anomaly detection method named OPHiForest with the use of the orderpreserving hashing based isolation forest.

166, TITLE: Deep Graph Convolutional Networks for Incident-Driven Traffic Speed Prediction https://dl.acm.org/doi/abs/10.1145/3340531.3411873 AUTHORS: Qinge Xie, Tiancheng Guo, Yang Chen, Yu Xiao, Xin Wang, Ben Y. Zhao HIGHLIGHT: In this work, we aim to make use of the information of incidents to achieve a better prediction of traffic speed. 167, TITLE: Controllable Multi-Character Psychology-Oriented Story Generation https://dl.acm.org/doi/abs/10.1145/3340531.3411937 AUTHORS: Feifei Xu, Xinpeng Wang, Yunpu Ma, Volker Tresp, Yuyi Wang, Shanlin Zhou, Haizhou Du HIGHLIGHT: In our work, we aim to design an emotional line for each character that considers multiple emotions common in psychological theories, with the goal of generating stories with richer emotional changes in the characters. 168, TITLE: Schema2QA: High-Quality and Low-Cost Q&A Agents for the Structured Web https://dl.acm.org/doi/abs/10.1145/3340531.3411974 AUTHORS: Silei Xu, Giovanni Campagna, Jian Li, Monica S. Lam HIGHLIGHT: This paper proposes Schema2QA, an open-source toolkit that can generate a Q&A system from a database schema augmented with a few annotations for each field. 169, TITLE: E-commerce Recommendation with Weighted Expected Utility https://dl.acm.org/doi/abs/10.1145/3340531.3411993 AUTHORS: Zhichao Xu, Yi Han, Yongfeng Zhang, Qingyao Ai HIGHLIGHT: In this paper, we interpret purchase utility as the satisfaction level a consumer gets from a product and propose a recommendation framework using EU to model consumers' behavioral patterns. NHP: Neural Hypergraph Link Prediction 170, TITLE: https://dl.acm.org/doi/abs/10.1145/3340531.3411870 AUTHORS: Naganand Yadati, Vikram Nitin, Madhay Nimishakayi, Prateek Yaday, Anand Louis, Partha Talukdar We propose two variants of NHP -- NHP-U and NHP-D -- for link prediction over undirected and directed HIGHLIGHT: hypergraphs, respectively. 171, TITLE: Fair Class Balancing: Enhancing Model Fairness without Observing Sensitive Attributes https://dl.acm.org/doi/abs/10.1145/3340531.3411980 AUTHORS: Shen Yan, Hsien-te Kao, Emilio Ferrara HIGHLIGHT: In this paper, we first illustrate the extent to which common balancing techniques exacerbate unfairness in realworld data. 172, TITLE: Beyond 512 Tokens: Siamese Multi-depth Transformer-based Hierarchical Encoder for Long-Form Document Matching https://dl.acm.org/doi/abs/10.1145/3340531.3411908 AUTHORS: Liu Yang, Mingyang Zhang, Cheng Li, Michael Bendersky, Marc Najork HIGHLIGHT: In this paper, we address the issue by proposing the Siamese Multi-depth Transformer-based Hierarchical (SMITH) Encoder for long-form document matching. 173, TITLE: NagE: Non-Abelian Group Embedding for Knowledge Graphs https://dl.acm.org/doi/abs/10.1145/3340531.3411875 AUTHORS: Tong Yang, Long Sha, Pengyu Hong HIGHLIGHT: Motivated by the theoretical analysis, we have proposed a group theory-based knowledge graph embedding framework, in which relations are embedded as group elements, and entities are represented by vectors in group action spaces. 174. TITLE: LB-CGM: Latent Based Conditional Generative Model with Reliable Distribution Prediction https://dl.acm.org/doi/abs/10.1145/3340531.3412002 AUTHORS: Yichen Yao, Guozheng Li, Yujie Chen, Rongqi Li, Yinzhi Zhou, Xiaodong Zhang, Haoyuan Hu, Yinghui Xu HIGHLIGHT: In this paper, we combine the advantages of both GANs (Generative Adversarial Nets) and VAEs (Variational Auto-Encoders), and introduce a latent-based conditional generative model (LB-CGM) to handle the distribution regression problems. 175, TITLE: LSAN: Modeling Long-term Dependencies and Short-term Correlations with Hierarchical Attention for Risk Prediction https://dl.acm.org/doi/abs/10.1145/3340531.3411864

AUTHORS: Muchao Ye, Junyu Luo, Cao Xiao, Fenglong Ma

HIGHLIGHT: To minimize the effect caused by noise information of EHR data, in this paper, we propose a novel DNN for risk prediction termed as LSAN, which consists of a Hierarchical Attention Module (HAM) and a Temporal Aggregation Module (TAM).

176, TITLE: Logic Enhanced Commonsense Inference with Chain Transformer https://dl.acm.org/doi/abs/10.1145/3340531.3411895 AUTHORS: Chenxi Yuan, Chun Yuan, Yang Bai, Ziran Li HIGHLIGHT: To alleviate this issue, we propose Chain Transformer, a logic enhanced commonsense inference model that combines both direct and indirect inferences to construct a logical chain so as to reason in a more logically consistent way. 177, TITLE: Exploring Missing Interactions: A Convolutional Generative Adversarial Network for Collaborative Filtering https://dl.acm.org/doi/abs/10.1145/3340531.3411917 Feng Yuan, Lina Yao, Boualem Benatallah AUTHORS: HIGHLIGHT: In this work, we focus on the semantic-rich user-item interactions in a recommender system and propose a novel generative adversarial network (GAN) named Convolutional Generative Collaborative Filtering (Conv-GCF). 178, TITLE: GeneraLight: Improving Environment Generalization of Traffic Signal Control via Meta Reinforcement Learning https://dl.acm.org/doi/abs/10.1145/3340531.3411859 AUTHORS: Huichu Zhang, Chang Liu, Weinan Zhang, Guanjie Zheng, Yong Yu HIGHLIGHT: In this paper, we design a novel traffic flow generator based on Wasserstein generative adversarial network to generate sufficient diverse and quality traffic flows and use them to build proper training and testing environments. TOMATO: A Topic-Wise Multi-Task Sparsity Model 179, TITLE: https://dl.acm.org/doi/abs/10.1145/3340531.3411972 Jason (Jiasheng) Zhang, Dongwon Lee AUTHORS: HIGHLIGHT: Based on this observation, in this paper, we propose a generalized topic-wise multi-task architecture, to capture the within-topic task relationship, which can be combined with any existing MTL designs. 180, TITLE: More Than One: A Cluster-Prototype Matching Framework for Zero-Shot Learning https://dl.acm.org/doi/abs/10.1145/3340531.3411883 AUTHORS: Jing Zhang, YangLi-a o Geng, Qingyong Li, Chuan Shi HIGHLIGHT: Inspired by this, we introduce a novel cluster-prototype matching (CPM) strategy and propose a ZSL framework based on CPM. 181. TITLE: A Feature-Importance-Aware and Robust Aggregator for GCN https://dl.acm.org/doi/abs/10.1145/3340531.3411983 AUTHORS: Li Zhang, Haiping Lu HIGHLIGHT: Under this framework, we propose a new model called LA-GCNMask consisting of a new aggregator function, mask aggregator. 182, TITLE: Query Understanding via Intent Description Generation https://dl.acm.org/doi/abs/10.1145/3340531.3411999 AUTHORS: Ruqing Zhang, Jiafeng Guo, Yixing Fan, Yanyan Lan, Xueqi Cheng HIGHLIGHT: In this paper, therefore, we propose a novel Query-to-Intent-Description (Q2ID) task for query understanding. 183, TITLE: Generating Categories for Sets of Entities https://dl.acm.org/doi/abs/10.1145/3340531.3412019 AUTHORS: Shuo Zhang, Krisztian Balog, Jamie Callan HIGHLIGHT: To aid knowledge editors in the manual process of expanding a category system, this paper presents a method of generating categories for sets of entities. 184, TITLE: CommDGI: Community Detection Oriented Deep Graph Infomax https://dl.acm.org/doi/abs/10.1145/3340531.3412042 AUTHORS: Tiangi Zhang, Yun Xiong, Jiawei Zhang, Yao Zhang, Yizhu Jiao, Yangyong Zhu HIGHLIGHT: To overcome the shortcomings of general-purposed graph representation learning methods, we propose the Community Deep Graph Infomax (CommDGI), a graph neural network designed to handle community detection problems. Spatial-Temporal Convolutional Graph Attention Networks for Citywide Traffic Flow Forecasting 185, TITLE: https://dl.acm.org/doi/abs/10.1145/3340531.3411941 AUTHORS: Xiyue Zhang, Chao Huang, Yong Xu, Lianghao Xia

HIGHLIGHT: To address these challenges, we propose a new traffic prediction framework--Spatial-Temporal Convolutional Graph Attention Network (ST-CGA), to enable the traffic prediction with the modeling of region dependencies, from locally to globally in a comprehensive manner.

186, TITLE:	Semi-Supervised Graph-to-Graph Translation
https://dl.acm.org/doi	/abs/10.1145/3340531.3411977
AUTHORS:	Tianxiang Zhao, Xianfeng Tang, Xiang Zhang, Suhang Wang
HIGHLIGHT:	Therefore,in this work, we seek to provide a graph translation model in the semi-supervised scenario.
187, TITLE:	Error-Bounded Graph Anomaly Loss for GNNs
https://dl.acm.org/doi	/abs/10.1145/3340531.3411979
AÛTHORS:	Tong Zhao, Chuchen Deng, Kaifeng Yu, Tianwen Jiang, Daheng Wang, Meng Jiang
HIGHLIGHT:	In this work, we propose a novel loss function to train GNNs for anomaly-detectable node representations.
188, TITLE: https://dl.acm.org/doi.	Whole-Chain Recommendations /abs/10.1145/3340531.3412044 Xionema Zheo, Leon Xio, Linia Zan, Uni Lin, Danuai Xia, Liliana Tana
HIGHLIGHT: recommendations.	In this paper, we study the recommendation problem with multiple (consecutive) scenarios, i.e., whole-chain
189, TITLE: https://dl.acm.org/doi.	S3-Rec: Self-Supervised Learning for Sequential Recommendation with Mutual Information Maximization /abs/10.1145/3340531.3411954
AUTHORS: Wen	Kun Zhou, Hui Wang, Wayne Xin Zhao, Yutao Zhu, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, Ji-Rong
HIGHLIGHT: Recommendation, bas	To tackle this problem, we propose the model S3-Rec, which stands for Self-Supervised learning for Sequential sed on the self-attentive neural architecture.
190, TITLE:	Top-k Graph Summarization on Hierarchical DAGs
https://dl.acm.org/doi	/abs/10.1145/3340531.3411899
AUTHORS:	Xuliang Zhu, Xin Huang, Byron Choi, Jianliang Xu
HIGHLIGHT:	In this paper, we study a new problem of finding k representative vertices to summarize a hierarchical DAG.
191, TITLE:	When Structure Meets Keywords: Cohesive Attributed Community Search
https://dl.acm.org/doi	/abs/10.1145/3340531.3412006
AUTHORS:	Yuanyuan Zhu, Jian He, Junhao Ye, Lu Qin, Xin Huang, Jeffrey Xu Yu
HIGHLIGHT:	In this paper, we propose a new cohesive attributed community (CAC) model that can ensure both structure
cohesiveness and attri	bute cohesiveness of communities.
192, TITLE: https://dl.acm.org/doi	LRHNE: A Latent-Relation Enhanced Embedding Method for Heterogeneous Information Networks /abs/10.1145/3340531.3411891
AUTHORS:	Zhihua Zhu, Xinxin Fan, Xiaokai Chu, Jianhui Huang, Jingping Bi
HIGHLIGHT:	Considering the sophisticated correlations in HINs, we in this paper propose a novel HIN embedding method
LRHNE to yield laten	t-relation enhanced embeddings for nodes.
193, TITLE:	Corpus Bootstrapping for Assessment of the Properties of Effectiveness Measures
https://dl.acm.org/doi	/abs/10.1145/3340531.3411998
AUTHORS: HIGHLIGHT: experimental IR.	Justin Zobel, Lida Rashidi In this work we consider how bootstrapping can be used to assess the reliability of effectiveness measures for
194, TITLE: https://dl.acm.org/doi.	Building Test Collections using Bandit Techniques: A Reproducibility Study /abs/10.1145/3340531.3412121 Robadir Altun Musebid Kuthu
HIGHLIGHT: methods, in terms of e	In this paper, we conduct a comprehensive set of experiments to evaluate six bandit-based document selection evaluation reliability, fairness, and reusability of the resultant test collections.
195, TITLE:	FDCM: Towards Balanced and Generalizable Concept-based Models for Effective Medical Ranking
https://dl.acm.org/doi.	/abs/10.1145/3340531.3412151
AUTHORS:	Mohammad Bahrani, Thomas Roelleke

HIGHLIGHT: scores effectively.	We propose a new aggregation parameter to combine conceptual and term-based Dirichlet Compound Model
196, TITLE:	Application Performance Anomaly Detection with LSTM on Temporal Irregularities in Logs
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412157
AUTHORS:	Xavier Baril, Oihana Coustié, Josiane Mothe, Olivier Teste
HIGHLIGHT:	In this paper, we develop a new model for performance anomaly detection that captures temporal deviations
from the nominal mo	del, by means of a sliding window data representation.
197, TITLE:	Automatic Gaussian Process Model Retrieval for Big Data
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412182
AUTHORS:	Fabian Berns, Christian Beecks
HIGHLIGHT:	Since non-approximative Gaussian Processes only allow for processing small datasets with low statistical
versatility, we propos	se a new approach that allows to efficiently and automatically retrieve GPMs for large-scale data.
198, TITLE:	Query Abandonment Prediction with Recurrent Neural Models of Mouse Cursor Movements
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412126
AUTHORS:	Lukas Brückner, Ioannis Arapakis, Luis A. Leiva
HIGHLIGHT:	We show that mouse cursor movements make a valuable, low-cost behavioral signal that can discriminate good
and bad abandonmen	t.
199, TITLE:	NumClaim: Investor's Fine-grained Claim Detection
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412100
AUTHORS:	Chung-Chi Chen, Hen-Hsen Huang, Hsin-Hsi Chen
HIGHLIGHT:	In this paper, we design a novel task for argument mining in the financial domain, and provide an expert-
annotated dataset, Nu	umClaim, for the proposed task.
200, TITLE:	Label-Aware Graph Convolutional Networks
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412139
AUTHORS:	Hao Chen, Yue Xu, Feiran Huang, Zengde Deng, Wenbing Huang, Senzhang Wang, Peng He, Zhoujun Li
HIGHLIGHT:	In this paper, we consider the problem of node classification and propose the Label-Aware Graph Convolutional
Network (LAGCN) f	ramework which can directly identify valuable neighbors to enhance the performance of existing GCN models.
201, TITLE:	Graph Unfolding Networks
https://dl.acm.org/doi	j/abs/10.1145/3340531.3412141
AUTHORS:	Hao Chen, Wenbing Huang, Yue Xu, Fuchun Sun, Zhoujun Li
HIGHLIGHT:	In this paper, we propose Graph Unfolding Networks (GUNets) as an alternative mechanism of recursive
neighborhood aggreg	gation for graph representation learning.
202, TITLE:	CONE-Align: Consistent Network Alignment with Proximity-Preserving Node Embedding
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412136
AUTHORS:	Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, Danai Koutra
HIGHLIGHT:	To improve this, we propose CONE-Align, which models intra-network proximity with node embeddings and
uses them to match n	odes across networks after aligning the embedding subspaces.
203, TITLE:	Generative Adversarial Attributed Network Anomaly Detection
https://dl.acm.org/do:	i/abs/10.1145/3340531.3412070
AUTHORS:	Zhenxing Chen, Bo Liu, Meiqing Wang, Peng Dai, Jun Lv, Liefeng Bo
HIGHLIGHT:	In this paper, we propose a generative adversarial attributed network (GAAN) anomaly detection framework.
204, TITLE:	Joint Estimation of User And Publisher Credibility for Fake News Detection
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412066
AUTHORS:	Rajdipa Chowdhury, Sriram Srinivasan, Lise Getoor
HIGHLIGHT:	In this work, we look at fake news detection as a problem of estimating the credibility of both the news
publishers and users	that propagate news articles.
205, TITLE:	Learning Discriminative Virtual Sequences for Time Series Classification
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412099

AUTHORS: Abhilash Dorle, Fangyu Li, Wenzhan Song, Sheng Li

HIGHLIGHT: To address this issue, in this paper, we propose a novel time series classification method named Discriminative Virtual Sequence Learning (DVSL).

206, TITLE: https://dl.acm.org/doi. AUTHORS: HIGHLIGHT: of sub-clusters.	DECWA: Density-Based Clustering using Wasserstein Distance /abs/10.1145/3340531.3412125 Nabil El Malki, Robin Cugny, Olivier Teste, Franck Ravat The key idea we propose is to use the Wasserstein metric, a powerful tool to measure the distance between p.d.f
207, TITLE:	Why is That a Background Article: A Qualitative Analysis of Relevance for News Background Linking
https://dl.acm.org/doi.	/abs/10.1145/3340531.3412120
AUTHORS:	Marwa Essam, Tamer Elsayed
HIGHLIGHT:	The goal of the study is to shed some light on the relationship between the query articles and the background
articles, and provide i	nformative insights for developing more effective background retrieval models.
208, TITLE:	Hybrid Dynamic Pruning for Efficient and Effective Query Processing
https://dl.acm.org/doi.	/abs/10.1145/3340531.3412113
AUTHORS:	Wenxiu Fang, Trent G. Marbach, Gang Wang, Xiaoguang Liu
HIGHLIGHT:	In this work, we investigate the performance of the main dynamic pruning algorithms in terms of average and
tail latency as well as	the accuracy of query results, and find that they are complementary.
209, TITLE:	Sample Optimization For Display Advertising
https://dl.acm.org/doi	/abs/10.1145/3340531.3412162
AUTHORS:	Hongliang Fei, Shulong Tan, Pengju Guo, Wenbo Zhang, Hongfang Zhang, Ping Li
HIGHLIGHT:	In this paper, we utilize several sample optimization strategies to alleviate the covariate shift problem for
training candidate ger	heration models.
210, TITLE:	A Reinforced Semi-supervised Neural Network for Helpful Review Identification
https://dl.acm.org/doi.	/abs/10.1145/3340531.3412101
AUTHORS:	Yue Feng, Miao Fan, Mingming Sun, Ping Li
HIGHLIGHT:	Therefore, this paper proposes a reinforced semi-supervised neural learning method (abbreviated as RSSNL) for
helpful review identif	fication, which can automatically select high-related unlabeled reviews to help training.
211, TITLE:	A View-Adversarial Framework for Multi-View Network Embedding
https://dl.acm.org/doi.	/abs/10.1145/3340531.3412127
AUTHORS:	Dongqi Fu, Zhe Xu, Bo Li, Hanghang Tong, Jingrui He
HIGHLIGHT:	In this paper, we propose a view-adversarial framework to generate comprehensive and robust multi-view
network representatio	ons named VANE, which is based on two adversarial games.
212, TITLE:	Can Adversarial Weight Perturbations Inject Neural Backdoors
https://dl.acm.org/doi.	/abs/10.1145/3340531.3412130
AUTHORS:	Siddhant Garg, Adarsh Kumar, Vibhor Goel, Yingyu Liang
HIGHLIGHT:	In this work we extend the idea of "adversarial perturbations" to the space of model weights,
specifically to inject b	packdoors in trained DNNs, which exposes a security risk of publicly available trained models.
213, TITLE:	Estimating Topic Difficulty Using Normalized Discounted Cumulated Gain
https://dl.acm.org/doi.	/abs/10.1145/3340531.3412109
AUTHORS:	Lukas Gienapp, Benno Stein, Matthias Hagen, Martin Potthast
HIGHLIGHT:	We introduce a new approach to estimate topic difficulty, which is based on the ratio of systems that achieve an
NDCG score that is b	etter than a baseline formed as random ranking of the pool of judged documents.
214, TITLE:	The Impact of Negative Relevance Judgments on NDCG
https://dl.acm.org/doi	/abs/10.1145/3340531.3412123
AUTHORS:	Lukas Gienapp, Maik Fröbe, Matthias Hagen, Martin Potthast
HIGHLIGHT:	We show that, instead of zeroing negative labels, a min-max-normalization of NDCG retains its statistical
power while improvir	ng its reliability and stability.
215, TITLE:	Speaker-Aware BERT for Multi-Turn Response Selection in Retrieval-Based Chatbots
https://dl.acm.org/doi	/abs/10.1145/3340531.3412330

AUTHORS: Jia-Chen Gu, Tianda Li, Quan Liu, Zhen-Hua Ling, Zhiming Su, Si Wei, Xiaodan Zhu

HIGHLIGHT: In this paper, we study the problem of employing pre-trained language models for multi-turn response selection in retrieval-based chatbots.

216, TITLE: https://dl.acm.org/doi/ AUTHORS: HIGHLIGHT: dynamic graphs.	Subsampled Randomized Hadamard Transform for Regression of Dynamic Graphs /abs/10.1145/3340531.3412158 Mostafa Haghir Chehreghani In this paper, we utilize subsampled randomized Hadamard transform to propose a randomized algorithm for
217, TITLE: https://dl.acm.org/doi/ AUTHORS: HIGHLIGHT: through a variational I future teams; ii) we br incorporating uncertai composition.	Learning to Form Skill-based Teams of Experts [abs/10.1145/3340531.3412140] Radin Hamidi Rad, Hossein Fani, Mehdi Kargar, Jaroslaw Szlichta, Ebrahim Bagheri Instead of forming a large network of experts, we propose to learn relationships among experts and skills Bayes neural architecture wherein: i) we consider all past team compositions as training instances to predict ing scalability for large networks of experts due to the neural architecture; and, iii) we address sparsity by nty on the neural network's parameters which yields a richer representation and more accurate team
218, TITLE:	GAEAT: Graph Auto-Encoder Attention Networks for Knowledge Graph Completion
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412148
AUTHORS:	Yanfei Han, Quan Fang, Jun Hu, Shengsheng Qian, Changsheng Xu
HIGHLIGHT:	In this paper, we present a new approach for knowledge graph completion called GAEAT (Graph Auto-encoder
Attention Network En	nbedding), which can encapsulate both entity and relation features.
219, TITLE:	Learning to Re-Rank with Contextualized Stopwords
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412079
AUTHORS:	Sebastian Hofstätter, Aldo Lipani, Markus Zlabinger, Allan Hanbury
HIGHLIGHT:	In this work we propose a novel contextualized stopword detection mechanism for neural re-ranking models.
220, TITLE:	DATSING: Data Augmented Time Series Forecasting with Adversarial Domain Adaptation
https://dl.acm.org/doi/	(abs/10.1145/3340531.3412155
AUTHORS:	Hailin Hu, MingJian Tang, Chengcheng Bai
HIGHLIGHT:	In this work, we have developed, DATSING, a transfer learning-based framework that effectively leverages
cross-domain time ser	ies latent representations to augment target domain forecasting.
221, TITLE:	Homogenization with Explicit Semantics Preservation for Heterogeneous Information Network
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412135
AUTHORS:	Tiancheng Huang, Zifeng Zhuang, Shanshan Zhang, Donglin Wang
HIGHLIGHT:	In this paper, a novel explicit homogenization method is proposed to preserve more semantic information,
where the latent inform	nation of intermediate nodes among each meta-path instance and that among multiple meta-path instances are
incorporated into the c	conventional adjacent matrix (or weight matrix).
222, TITLE:	DistilSum:: Distilling the Knowledge for Extractive Summarization
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412078
AUTHORS:	Ruipeng Jia, Yanan Cao, Haichao Shi, Fang Fang, Yanbing Liu, Jianlong Tan
HIGHLIGHT:	In this paper, we introduce DistilSum, which contains teacher mechanism and student model.
223, TITLE:	T-REX: A Topic-Aware Relation Extraction Model
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412133
AUTHORS:	Woohwan Jung, Kyuseok Shim
HIGHLIGHT:	To tackle the problem, we propose a Topic-aware Relation EXtraction (T-REX) model.
224, TITLE:	CR-Graph: Community Reinforcement for Accurate Community Detection
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412145
AUTHORS:	Yoonsuk Kang, Jun Seok Lee, Won-Yong Shin, Sang-Wook Kim
HIGHLIGHT:	In this paper, we present CR-Graph (community reinforcement on graphs), a novel method that helps existing
algorithms to perform	more-accurate community detection (CD).

225, TITLE: What Rankers Can be Statistically Distinguished in Multileaved Comparisons? https://dl.acm.org/doi/abs/10.1145/3340531.3412143

AUTHORS:	Makoto P. Kato, Akiomi Nishida, Tomohiro Manabe, Sumio Fujita, Takehiro Yamamoto
HIGHLIGHT:	This paper presents findings from an empirical study of multileaved comparisons, an efficient online evaluation
methodology, in a cor	mmercial Web service.
226, TITLE:	A Synopses Data Engine for Interactive Extreme-Scale Analytics
https://dl.acm.org/doi	/abs/10.1145/3340531.3412154
AUTHORS:	Antonis Kontaxakis, Nikos Giatrakos, Antonios Deligiannakis
HIGHLIGHT:	We detail the novel architecture of a Synopses Data Engine (SDE) which combines the virtues of parallel
processing and strean	a summarization towards interactive analytics at scale.
227, TITLE:	NASE:: Learning Knowledge Graph Embedding for Link Prediction via Neural Architecture Search
https://dl.acm.org/doi	/abs/10.1145/3340531.3412104
AUTHORS:	Xiaoyu Kou, Bingfeng Luo, Huang Hu, Yan Zhang
HIGHLIGHT:	In this paper, we propose a novel Neural Architecture Search (NAS) framework for the link prediction task.
228, TITLE:	Ranking Clarification Questions via Natural Language Inference
https://dl.acm.org/doi	/abs/10.1145/3340531.3412137
AUTHORS:	Vaibhav Kumar, Vikas Raunak, Jamie Callan
HIGHLIGHT:	For the task of ranking clarification questions, we hypothesize that determining whether a clarification question
pertains to a missing	entry in a given post (on QA forums such as StackExchange) could be considered as a special case of Natural
Language Inference (NLI), where both the post and the most relevant clarification question point to a shared latent piece of
information or contex	tt.
229, TITLE:	MetaTPOT: Enhancing A Tree-based Pipeline Optimization Tool Using Meta-Learning
https://dl.acm.org/doi	/abs/10.1145/3340531.3412147
AUTHORS:	Doron Laadan, Roman Vainshtein, Yarden Curiel, Gilad Katz, Lior Rokach
HIGHLIGHT:	In this study, we explore TPOT's GP process and propose MetaTPOT, an enhanced variant that uses a meta
learning-based approa	ach to predict the performance of TPOT's pipeline candidates.
230, TITLE:	Rethinking Operators Placement of Stream Data Application in the Edge
https://dl.acm.org/doi	/abs/10.1145/3340531.3412116
AUTHORS:	Thomas Lambert, David Guyon, Shadi Ibrahim
HIGHLIGHT:	In this paper, we argue that MST should be used as an optimization objective when placing operators.
231, TITLE: https://dl.acm.org/doi AUTHORS: HIGHLIGHT: systems.	An Index Advisor Using Deep Reinforcement Learning /abs/10.1145/3340531.3412106 Hai Lan, Zhifeng Bao, Yuwei Peng We study the problem of index selection to maximize the workload performance, which is critical to database
232, TITLE: https://dl.acm.org/doi AUTHORS: HIGHLIGHT: which estimates the c click data.	Bridging the Gap between Click and Relevance for Learning-to-Rank with Minimal Supervision /abs/10.1145/3340531.3412144 Jae-woong Lee, Young-In Song, Deokmin Haam, Sanghoon Lee, Woo-sik Choi, Jongwuk Lee From a different perspective, we propose a simple-yet-effective ranking model, namely wLambdaMART, onfidence of click data with a few labeled data, instead of learning the propensity weight to reduce the bias from
233, TITLE: https://dl.acm.org/doi AUTHORS: HIGHLIGHT: (NE) methods.	Are Negative Links Really Beneficial to Network Embedding?: In-Depth Analysis and Interesting Results /abs/10.1145/3340531.3412107 Yeon-Chang Lee, Nayoun Seo, Sang-Wook Kim In this paper, we start by pointing out the limitations on the validation of existing signed network embedding
234, TITLE:	Non-local Self-attentive Autoencoder for Genetic Functionality Prediction
https://dl.acm.org/doi	/abs/10.1145/3340531.3412084
AUTHORS:	Yun Li, Zhe Liu, Lina Yao, Zihuai He
HIGHLIGHT:	To tackle this problem, we propose Non-local Self-attentive Autoencoder (NSAE) which applies attention-
driven genetic variant	t modelling.

235, TITLE: Recursive Balanced k-Subset Sum Partition for Rule-constrained Resource Allocation

https://dl.acm.org/doi/abs/10.1145/3340531.3412076 AUTHORS: Zhuo Li, Jiannong Cao, Zhongyu Yao, Wengen Li, Yu Yang, Jia Wang HIGHLIGHT: To address these limitations, we propose recursive balanced k-subset sum partition (RBkSP), in which iterative 'cut-one-out' policy is employed that in each round, only one subset whose weight of tasks sums up to 1/k of the total weight of all tasks is taken out from the set. 236. TITLE: Alike and Unlike: Resolving Class Imbalance Problem in Financial Credit Risk Assessment https://dl.acm.org/doi/abs/10.1145/3340531.3412111 AUTHORS: Yang Liu, Xiang Ao, Qiwei Zhong, Jinghua Feng, Jiayu Tang, Qing He HIGHLIGHT: In this paper, we propose a novel adversarial data augmentation method to solve the class imbalance problem in financial credit risk assessment. 237. TITLE: Active Query of Private Demographic Data for Learning Fair Models https://dl.acm.org/doi/abs/10.1145/3340531.3412074 AUTHORS: Yijun Liu, Chao Lan HIGHLIGHT: In this paper, we propose a new direction called active demographic query. 238, TITLE: Neural Relation Extraction on Wikipedia Tables for Augmenting Knowledge Graphs https://dl.acm.org/doi/abs/10.1145/3340531.3412164 AUTHORS: Erin Macdonald, Denilson Barbosa HIGHLIGHT: We help close this gap with a neural method that uses contextual information surrounding a table in a Wikipedia article to extract relations between entities appearing in the same row of a table or between the entity of said article and entities appearing in the table. Fairness-Aware Learning with Prejudice Free Representations 239, TITLE: https://dl.acm.org/doi/abs/10.1145/3340531.3412150 AUTHORS: Ramanujam Madhavan, Mohit Wadhwa HIGHLIGHT: In this paper, we propose a novel algorithm that can effectively identify and treat latent discriminating features. 240, TITLE: A Comparison of Top-k Threshold Estimation Techniques for Disjunctive Query Processing https://dl.acm.org/doi/abs/10.1145/3340531.3412080 AUTHORS: Antonio Mallia, Michal Siedlaczek, Mengyang Sun, Torsten Suel In this paper, we address this issue by reimplementing four major approaches and comparing them in terms of HIGHLIGHT: estimation error, running time, likelihood of an overestimate, and end-to-end performance when applied to common classes of disjunctive top-k query processing algorithms. 241. TITLE: Feedback Loop and Bias Amplification in Recommender Systems https://dl.acm.org/doi/abs/10.1145/3340531.3412152 AUTHORS: Masoud Mansoury, Himan Abdollahpouri, Mykola Pechenizkiy, Bamshad Mobasher, Robin Burke HIGHLIGHT: In this paper, we propose a method for simulating the users interaction with the recommenders in an offline setting and study the impact of feedback loop on the popularity bias amplification of several recommendation algorithms. 242, TITLE: Diversifying Top-k Point-of-Interest Queries via Collective Social Reach https://dl.acm.org/doi/abs/10.1145/3340531.3412097 AUTHORS: Stella Maropaki, Sean Chester, Christos Doulkeridis, Kjetil Nørvåg HIGHLIGHT: Algorithmically, evaluating this set-based notion of diversity is challenging, yet we present several effective algorithms based on (integer) linear programming, a greedy framework, and r-tree distance browsing. 243. TITLE: Transformer Models for Recommending Related Questions in Web Search https://dl.acm.org/doi/abs/10.1145/3340531.3412067 AUTHORS: Rajarshee Mitra, Manish Gupta, Sandipan Dandapat HIGHLIGHT: In this paper, we present our system which is based on a Transformer-based neural representation, BERT (Bidirectional Encoder Representations from Transformers), for query, question and corresponding search result snippets. 244, TITLE: Evaluating the Impact of Knowledge Graph Context on Entity Disambiguation Models https://dl.acm.org/doi/abs/10.1145/3340531.3412159 Isaiah Onando Mulang', Kuldeep Singh, Chaitali Prabhu, Abhishek Nadgeri, Johannes Hoffart, Jens Lehmann AUTHORS: HIGHLIGHT: In this paper, we argue that context derived from a knowledge graph (in our case: Wikidata) provides enough

signals to inform pretrained transformer models and improve their performance for named entity disambiguation (NED) on Wikidata KG.

245, TITLE:	Deep Metric Learning Based on Rank-sensitive Optimization of Top-k Precision
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412142
AUTHORS:	Naoki Muramoto, Hai-Tao Yu
HIGHLIGHT:	In this paper, we propose a new method on how to optimize top-k precision in a rank-sensitive manner.
246, TITLE: https://dl.acm.org/doi AUTHORS: Zhenzhong Chen HIGHLIGHT:	Gated Heterogeneous Graph Representation Learning for Shop Search in E-commerce i/abs/10.1145/3340531.3412087 Xichuan Niu, Bofang Li, Chenliang Li, Rong Xiao, Haochuan Sun, Honggang Wang, Hongbo Deng, In this work, we focus on vectorized search matching model for shop search in Taobao.
247, TITLE: Prediction https://dl.acm.org/doi AUTHORS: HIGHLIGHT: in problems that can	A Reproducibility Study of Deep and Surface Machine Learning Methods for Human-related Trajectory i/abs/10.1145/3340531.3412088 Bardh Prenkaj, Paola Velardi, Damiano Distante, Stefano Faralli In this paper, we compare several deep and surface state-of-the-art machine learning methods for risk prediction be modelled as a trajectory of events separated by irregular time intervals.
248, TITLE:	CGTR: Convolution Graph Topology Representation for Document Ranking
https://dl.acm.org/doi	J/abs/10.1145/3340531.3412073
AUTHORS:	Yuanyuan Qi, Jiayue Zhang, Yansong Liu, Weiran Xu, Jun Guo
HIGHLIGHT:	In this paper, we take the advantage of Graph Convolutional Networks (GCN) to model global word-relation
structure of a docume	ent to improve context-aware document ranking.
249, TITLE: https://dl.acm.org/doi AUTHORS: HIGHLIGHT: model.	Representative Negative Instance Generation for Online Ad Targeting J/abs/10.1145/3340531.3412114 Yuhan Quan, Jingtao Ding, Depeng Jin, Jianbo Yang, Xing Zhou, Yong Li In this work, we tackle this problem by improving the quality of negative instances used in training the targeting
250, TITLE:	Training Sensitivity in Graph Isomorphism Network
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412089
AUTHORS:	Md. Khaledur Rahman
HIGHLIGHT:	In this paper, we attempt to fill this gap by studying various alternative functions for a respective module using
a diverse set of bench	umark datasets.
251, TITLE: https://dl.acm.org/doi AUTHORS: HIGHLIGHT: attacks.	Securing Bloom Filters for Privacy-preserving Record Linkage i/abs/10.1145/3340531.3412105 Thilina Ranbaduge, Rainer Schnell In this paper we propose two novel techniques that can be applied on BF encoding to improve privacy against
252, TITLE:	Product Insights: Analyzing Product Intents in Web Search
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412090
AUTHORS:	Nikitha Rao, Chetan Bansal, Subhabrata Mukherjee, Chandra Maddila
HIGHLIGHT:	In this work, we study search logs from Bing web search engine to characterize user intents and study user
behavior for product	search.
253, TITLE:	Muse: Multi-query Event Trend Aggregation
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412138
AUTHORS:	Allison Rozet, Olga Poppe, Chuan Lei, Elke A. Rundensteiner
HIGHLIGHT:	We propose MUSE (Multi-query Shared Event trend aggregation), the first framework that shares aggregation
queries with Kleene p	patterns while avoiding expensive trend construction.
254, TITLE:	Distant Supervision in BERT-based Adhoc Document Retrieval
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412124
AUTHORS:	Koustav Rudra, Avishek Anand
HIGHLIGHT:	In this paper, we handle both the issues simultaneously and introduce passage level weak supervision in contrast
to standard document	t level supervision.

255, TITLE:	Modelling Regional Crime Risk using Directed Graph of Check-ins
https://dl.acm.org/doi	1/abs/10.1145/3340531.3412065
AUTHORS:	Shakila Khan Kumi, Flora D. Salim The mobility dynamics inferred from Foursquare helps us understanding urban social events like crime in this
naper we propose a (The mooting dynamics interfect non-rousquare heips us understanding urban social events like erine in uns directed graph from the aggregated movement between regions using Foursquare data
puper, we propose a	anoood gruph nom the aggregated movement between regions using roursquare data.
256, TITLE:	Relation Extraction with Self-determined Graph Convolutional Network
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412072
AUTHORS:	Sunil Kumar Sahu, Derek Thomas, Billy Chiu, Neha Sengupta, Mohammady Mahdy
HIGHLIGHT:	In this work, we propose a novel model, the Self-determined Graph Convolutional Network (SGCN), which
determines a weighte	d graph using a self-attention mechanism, rather using any linguistic tool.
257. TITLE:	A Framework for Analyzing the Impact of Missing Data in Predictive Models
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412129
AUTHORS:	Fabiola Santore, Eduardo C. de Almeida, Wagner H. Bonat, Eduardo H. M. Pena, Luiz Eduardo S. de Oliveira
HIGHLIGHT:	We propose a stochastic framework to evaluate the impact of missing data on the performance of predictive
models.	
238, IIILE: https://dl.acm.org/doi	Deep Adaptive realure Aggregation in Multi-task Convolutional Neural Networks
AUTHORS:	Zhen Shen Chaoran Cui Jin Huang Jian Zong Meng Chen Yilong Yin
HIGHLIGHT:	In this paper, we propose a novel Adaptive Feature Aggregation (AFA) layer for multi-task CNNs, in which a
dynamic aggregation	mechanism is designed to allow each task to adaptively determine the degree to which the feature aggregation of
different tasks is need	ded according to the feature dependencies.
259, TITLE:	GGDs: Graph Generating Dependencies
https://dl.acm.org/doi	1/abs/10.1145/3340531.3412149
HIGHLIGHT	Lanssa C. Shimomura, George Fictcher, Nikolay Yakovets Wa propose Graph Gamering Departmentaging (GCDC) a new class of dependencies for property graphs
monifiont.	we propose oraph denotating Dependencies (OODS), a new class of dependencies for property graphs.
260, TITLE:	Do You Really Like Her Post?: Network-Based Analysis for Understanding Like Activities in SNS
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412166
AUTHORS:	Junho Song, Hyekyoung Park, Kyungsik Han, Sang-Wook Kim
HIGHLIGHT:	In this paper, we build like networks in Instagram and analyze them through the lens of two salient aspects -
friendship and interes	st - that constitute social networks.
261 TITLE:	DREAM: A Dynamic Relation-Aware Model for Social Recommendation
https://dl.acm.org/doi	JADAMI A Dynamic Relation Aware Wodel for Social Recommendation
AUTHORS:	Lioiang Song, Ye Bi, Mengqiu Yao, Zhenyu Wu, Jianming Wang, Jing Xiao
HIGHLIGHT:	In this paper, we propose a unified framework named Dynamic RElation-Aware Model (DREAM) for social
recommendation, wh	ich tries to model both users?
262, TITLE:	LogBug: Generating Adversarial System Logs in Real Time
https://dl.acm.org/doi	//208/10.114//3340531.3412105
HIGHLIGHT	Jingyu Sun, Dingyu Liu, Tuan Hong In this paper to our best knowledge, we take the first step to propose a povel real-time black-box attack
framework LogBug i	in this paper, to but bost knowledge, we take the first step to propose a nover rear-time prack-box attack in which attackers slightly modify the logs to deviate the analysis result (i.e. evading the anomaly detection)
without knowing the	learning model and parameters of the log parser.
8	
263, TITLE:	TABLE: A Task-Adaptive BERT-based ListwisE Ranking Model for Document Retrieval
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412071
AUTHORS:	Xingwu Sun, Hongyin Tang, Fuzheng Zhang, Yanling Cui, Beihong Jin, Zhongyuan Wang
HIGHLIGHT	in the pre-training stage of IABLE, we present a domain-adaptive strategy.
264, TITLE:	DynamicRec: A Dynamic Convolutional Network for Next Item Recommendation
https://dl.acm.org/doi	i/abs/10.1145/3340531.3412118
AUTHORS:	Md Mehrab Tanjim, Hammad A. Ayuubi, Garrison W. Cottrell
HIGHLIGHT:	In this paper, we argue that all the dynamics of the item-to-item transition in session-based settings may not be
observable at training	g time.

265, TITLE:	Schema-Agnostic Entity Matching using Pre-trained Language Models
https://dl.acm.org/do	bi/abs/10.1145/3340531.3412131 Kai-Sheng Teong Lav-Ki Soon, Tin Tin Su
HIGHLIGHT:	In view of this challenge, this paper presents an effective approach for schema-agnostic EM, where having
schema-aligned tabl	es is not compulsory.
266, TITLE:	Denoising Individual Bias for Fairer Binary Submatrix Detection
https://dl.acm.org/do	pi/abs/10.1145/3340531.3412156 Changlin Wan, Wennan Chang, Tong Zhao, Sha Cao, Chi Zhang
HIGHLIGHT:	We propose a binary data denoising framework, namely BIND, which optimizes the detection of true patterns
by estimating the ro	w- or column-wise mixture distribution of patterns and disparate background, and eliminating the binary attributes
that are more likely	from the background.
267, TITLE: https://dl.acm.org/d/	Dual Autoencoder Network with Swap Reconstruction for Cold-Start Recommendation si/abs/10.1145/3340531.3412069
AUTHORS:	Bei Wang, Chenrui Zhang, Hao Zhang, Xiaoqing Lyu, Zhi Tang
HIGHLIGHT:	In this paper, we propose a Dual Autoencoder Network (DAN), which implements cross-domain
recommendations to	cold-start users in an end-to-end manner.
268, TITLE: https://dl.acm.org/d/	Embedding Node Structural Role Identity into Hyperbolic Space si/abs/10.1145/3340531.3412102
AUTHORS:	Lili Wang, Ying Lu, Chenghan Huang, Soroush Vosoughi
HIGHLIGHT:	In this work, we are the first to present a framework to embed the structural roles of nodes into hyperbolic
space.	
https://dl.acm.org/do	calibration of Google Trends Time Series pi/abs/10.1145/3340531.3412075
AUTHORS:	Robert West
HIGHLIGHT:	We address this issue by proposing Google Trends Anchor Bank (G-TAB), an efficient solution for the
calibration of Googi	
27 0 TITLE.	Talamant Mantrass David dams Discovery for Easting Salastian
https://dl.acm.org/do	bi/abs/10.1145/3340531.3415927
AUTHORS:	Xingyu Wu, Bingbing Jiang, Yan Zhong, Huanhuan Chen
space to a reproduci	In this paper, we propose a tolerant MB discovery algorithm (1LMB), which maps the feature space and target ng kernel Hilbert space through the conditional covariance operator, to measure the causal information carried by
a feature.	
271, TITLE:	Deep Multi-Interest Network for Click-through Rate Prediction
https://dl.acm.org/do	bi/abs/10.1145/3340531.3412092
HIGHLIGHT:	In this paper, we propose a novel method named as Deep Multi-Interest Network (DMIN) which models user's
latent multiple intere	ests for click-through rate prediction task.
272, TITLE:	Learning to Generate Reformulation Actions for Scalable Conversational Query Understanding
https://dl.acm.org/do	bi/abs/10.1145/3340531.3412112
HIGHLIGHT:	For action generation, we propose a multi-task learning framework enhanced by coreference resolution, and
introduce grammar of	constraints into the decoding process.
273, TITLE:	Enhance Prototypical Network with Text Descriptions for Few-shot Relation Classification
https://dl.acm.org/do	bi/abs/10.1145/3340531.3412153 Kojija Yang Nantao Zhang Yinyu Dai Liang Ha Shujian Huang Jiajun Chan
HIGHLIGHT:	In this paper, we propose TD-Proto, which enhances prototypical network with relation and entity descriptions.
274, TITLE:	Analysis of Multivariate Scoring Functions for Automatic Unbiased Learning to Rank
https://dl.acm.org/do	pi/abs/10.1145/3340531.3412128
AUTHORS:	Tao Yang, Shikai Fang, Shibo Li, Yulan Wang, Qingyao Ai

HIGHLIGHT: In this paper, we investigate existing multivariate scoring functions and AutoULTR algorithms in theory and prove that permutation invariance is a crucial factor that determines whether a context-aware learning-to-rank model could be applied to existing AutoULTR framework.

275, TITLE:	Time-aware Graph Relational Attention Network for Stock Recommendation
https://dl.acm.org/doi/	abs/10.1145/3340531.3412160
AUTHORS:	Xiaoting Ying, Cong Xu, Jianliang Gao, Jianxin Wang, Zhao Li
HIGHLIGHT:	In this paper, we propose a time-aware graph relational attention network (TRAN) for stock recommendation
based on return ratio r	anking.
276, TITLE:	Deep Interaction Machine: A Simple but Effective Model for High-order Feature Interactions
https://dl.acm.org/doi/	abs/10.1145/3340531.3412077
AUTHORS:	Feng Yu, Zhaocheng Liu, Qiang Liu, Haoli Zhang, Shu Wu, Liang Wang
HIGHLIGHT:	Accordingly, we propose a novel Interaction Machine (IM) model.
277, TITLE:	Few-shot Insider Threat Detection
https://dl.acm.org/doi/	abs/10.1145/3340531.3412161
AUTHORS:	Shuhan Yuan, Panpan Zheng, Xintao Wu, Hanghang Tong
HIGHLIGHT:	In this work, we propose a novel framework combining the idea of self-supervised pre-training and metric-
based few-shot learnin	ng to detect insiders.
278, TITLE:	Leveraging User Email Actions to Improve Ad-Close Prediction
https://dl.acm.org/doi/	abs/10.1145/3340531.3412093
AUTHORS:	Oleg Zendel, Yaroslav Fyodorov, Fiana Raiber, Natalia Silberstein, Oren Somekh, Ali Tabaja
HIGHLIGHT:	In this work, we focus on email since this is the property in which most ad closes occur.
279, TITLE:	Event-Driven Network for Cross-Modal Retrieval
https://dl.acm.org/doi/	abs/10.1145/3340531.3412081
AUTHORS:	Zhixiong Zeng, Nan Xu, Wenji Mao
HIGHLIGHT:	To tackle the challenge, in this paper, we focus on the retrieval task on long text and image, and propose an
event-driven network	for cross-modal retrieval.
280, TITLE:	Integrating Diagnosis Rules into Deep Neural Networks for Bladder Cancer Staging
https://dl.acm.org/doi/	abs/10.1145/3340531.3412122
AUTHORS:	Cheng Zhang, Xiaodong Yue, Yufei Chen, Ying Lv
HIGHLIGHT:	To tackle the problems, we construct the diagnosis rules of bladder cancer staging based on the clinical
experiences of tumor p	penetration into bladder wall.
281, TITLE:	Hyper-Substructure Enhanced Link Predictor
https://dl.acm.org/doi/	abs/10.1145/3340531.3412096
AUTHORS:	Jian Zhang, Jun Zheng, Jinyin Chen, Qi Xuan
HIGHLIGHT:	In this paper, we propose an end-to-end deep learning framework, namely hyper-substructure enhanced link
predictor (HELP), for	link prediction.
282, TITLE:	Seasonal-Periodic Subgraph Mining in Temporal Networks
https://dl.acm.org/doi/	abs/10.1145/3340531.3412091
AUTHORS:	Qianzhen Zhang, Deke Guo, Xiang Zhao, Xinyi Li, Xi Wang
HIGHLIGHT:	This motivates us to explore mining seasonal-periodic subgraphs, and the investigation presents a novel model,
called maximal Ï <i>f</i> -per	iodic \$ømega\$-seasonal k-subgraph.
283, TITLE:	Multiplex Graph Neural Networks for Multi-behavior Recommendation
https://dl.acm.org/doi/	abs/10.1145/3340531.3412119
AUTHORS:	Weifeng Zhang, Jingwen Mao, Yi Cao, Congfu Xu
HIGHLIGHT:	In this paper, a more general model named Multiplex Graph Neural Network (MGNN) is proposed as a remedy.
284, TITLE:	Robust Normalized Squares Maximization for Unsupervised Domain Adaptation
https://dl.acm.org/doi/	abs/10.1145/3340531.3412083
AUTHORS:	Wenju Zhang, Xiang Zhang, Qing Liao, Wenjing Yang, Long Lan, Zhigang Luo
HIGHLIGHT:	In this paper, we propose a novel normalized squares maximization (NSM) loss in which the maximum squares
is normalized by the si	um of squares of class sizes.

 285, TITLE:
 Community Identification in Signed Networks: A K-Truss Based Model

 https://dl.acm.org/doi/abs/10.1145/3340531.3412117

 AUTHORS:
 Jun Zhao, Renjie Sun, Qiuyu Zhu, Xiaoyang Wang, Chen Chen

 HIGHLIGHT:
 To better describe the communities, we propose a novel model, named signed k-truss, which leverages the

 properties of k-truss
 and balanced triangle.

286, TITLE: https://dl.acm.org/doi/ AUTHORS: HIGHLIGHT: (ENRMNR).	An Event-Oriented Neural Ranking Model for News Retrieval /abs/10.1145/3340531.3412082 Lin Zhao, Wanhui Qian, Liangjun Zang, Fuqing Zhu, Yijun Lu, Ruixuan Li, Jizhong Han, Songlin Hu In this paper, we propose a novel and effective event-oriented neural ranking model for news retrieval
287, TITLE:	Revisiting Alternative Experimental Settings for Evaluating Top-N Item Recommendation Algorithms
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412095
AUTHORS:	Wayne Xin Zhao, Junhua Chen, Pengfei Wang, Qi Gu, Ji-Rong Wen
HIGHLIGHT:	In this paper, we revisit alternative experimental settings for evaluating top-N recommendation algorithms,
considering three imp	ortant factors, namely dataset splitting, sampled metrics and domain selection.
288, TITLE:	Dimension Relation Modeling for Click-Through Rate Prediction
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412108
AUTHORS:	Zihao Zhao, Zhiwei Fang, Yong Li, Changping Peng, Yongjun Bao, Weipeng Yan
HIGHLIGHT:	In this paper, we find it has clear positive effects on CTR prediction to model such relations and propose a
novel Dimension Rela	ation Module (DRM) to capture them through dimension recalibration.
289, TITLE:	On-demand Influencer Discovery on Social Media
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412134
AUTHORS:	Cheng Zheng, Qin Zhang, Sean Young, Wei Wang
HIGHLIGHT:	To alleviate this limitation, we investigate an on-Demand Influencer Discovery (DID) framework that is able to
identify influencers or	n any subject depicted by a few user-specified keywords, regardless of its popularity on social media.
290, TITLE:	Data Augmentation for Graph Classification
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412086
AUTHORS:	Jiajun Zhou, Jie Shen, Qi Xuan
HIGHLIGHT:	Towards this, we introduce data augmentation on graphs and present two heuristic algorithms: \emrandom
mapping and \emmoti	f-similarity mapping, to generate more weakly labeled data for small-scale benchmark datasets via heuristic
modification of graph	structures.
291, TITLE:	Diversifying Multi-aspect Search Results Using Simpson's Diversity Index
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412163
AUTHORS:	Jianghong Zhou, Eugene Agichtein, Surya Kallumadi
HIGHLIGHT:	To address this problem, we introduce a novel method by adapting the Simpson's Diversity Index from biology,
which enables a more	effective and efficient quadratic search result diversification algorithm.
292, TITLE:	Leveraging Historical Interaction Data for Improving Conversational Recommender System
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412098
AUTHORS:	Kun Zhou, Wayne Xin Zhao, Hui Wang, Sirui Wang, Fuzheng Zhang, Zhongyuan Wang, Ji-Rong Wen
HIGHLIGHT:	For this purpose, we propose a novel pre-training approach to integrating both item-based preference sequence
(from historical intera	ction data) and attribute-based preference sequence (from conversation data) via pre-training methods.

293, TITLE:Behavior-driven Student Performance Prediction with Tri-branch Convolutional Neural Networkhttps://dl.acm.org/doi/abs/10.1145/3340531.3412110AUTHORS:Jian Zong, Chaoran Cui, Yuling Ma, Li Yao, Meng Chen, Yilong YinHIGHLIGHT:In this paper, we seek to address the problem by analyzing students' daily studying and living behavior, which iscomprehensively recorded via campus smart cards.

294, TITLE:Multimodal Clustering via Deep Commonness and Uniqueness Mining
https://dl.acm.org/doi/abs/10.1145/3340531.3412103AUTHORS:Linlin Zong, Faqiang Miao, Xianchao Zhang, Bo Xu

HIGHLIGHT: In this paper, we enhance the mining of modality-common knowledge by extracting the modality-unique knowledge of each modality simultaneously.

295, TITLE: An Empirical Study on Clarifying Question-Based Systems https://dl.acm.org/doi/abs/10.1145/3340531.3412094 AUTHORS: Jie Zou, Evangelos Kanoulas, Yiqun Liu HIGHLIGHT: In this work, we conduct an online experiment by deploying an experimental system, which interacts with users by asking clarifying questions against a product repository. 296, TITLE: AutoADR: Automatic Model Design for Ad Relevance https://dl.acm.org/doi/abs/10.1145/3340531.3412688 AUTHORS: Yiren Chen, Yaming Yang, Hong Sun, Yujing Wang, Yu Xu, Wei Shen, Rong Zhou, Yunhai Tong, Jing Bai, Ruofei Zhang HIGHLIGHT: In this paper, we propose AutoADR (Automatic model design for AD Relevance) --- a novel end-to-end framework to address this challenge, and share our experience to ship these cutting-edge techniques into online Ad Relevance system at Microsoft Bing. 297, TITLE: U-rank: Utility-oriented Learning to Rank with Implicit Feedback https://dl.acm.org/doi/abs/10.1145/3340531.3412756 AUTHORS: Xinyi Dai, Jiawei Hou, Qing Liu, Yunjia Xi, Ruiming Tang, Weinan Zhang, Xiuqiang He, Jun Wang, Yong Yu HIGHLIGHT: To this end, we propose a novel ranking framework called U-rank that directly optimizes the expected utility of the ranking list. 298, TITLE: Personalized Bundle Recommendation in Online Games https://dl.acm.org/doi/abs/10.1145/3340531.3412734 AUTHORS: Qilin Deng, Kai Wang, Minghao Zhao, Zhene Zou, Runze Wu, Jianrong Tao, Changjie Fan, Liang Chen HIGHLIGHT: In this paper, we target at a practical but less explored recommendation problem named bundle recommendation, which aims to offer a combination of items to users. 299, TITLE: Learning Formatting Style Transfer and Structure Extraction for Spreadsheet Tables with a Hybrid Neural Network Architecture https://dl.acm.org/doi/abs/10.1145/3340531.3412718 AUTHORS: Haoyu Dong, Jiong Yang, Shi Han, Dongmei Zhang HIGHLIGHT: In this paper, we propose techniques for table formatting style transfer, i.e., to automatically format a target table according to the style of a reference table. 300, TITLE: The Utility of Context When Extracting Entities From Legal Documents https://dl.acm.org/doi/abs/10.1145/3340531.3412746 AUTHORS: Jonathan Donnelly, Adam Roegiest HIGHLIGHT: Inspired by previous work in Named Entity Recognition (NER), we investigate how NER techniques can be leveraged to aid lawyers in this review process. 301, TITLE: Learning to Rank in the Position Based Model with Bandit Feedback https://dl.acm.org/doi/abs/10.1145/3340531.3412723 AUTHORS: Beyza Ermis, Patrick Ernst, Yannik Stein, Giovanni Zappella HIGHLIGHT: We propose novel extensions of two well-known algorithms viz. 302, TITLE: Fusing Global Domain Information and Local Semantic Information to Classify Financial Documents https://dl.acm.org/doi/abs/10.1145/3340531.3412707 AUTHORS: Mengzhen Fan, Dawei Cheng, Fangzhou Yang, Siqiang Luo, Yifeng Luo, Weining Qian, Aoying Zhou HIGHLIGHT: In this paper, we implement a document classification framework, named GraphSEAT, to classify financial documents for a leading financial information service provider in China. 303, TITLE: MTBRN: Multiplex Target-Behavior Relation Enhanced Network for Click-Through Rate Prediction https://dl.acm.org/doi/abs/10.1145/3340531.3412729 AUTHORS: Yufei Feng, Fuyu Lv, Binbin Hu, Fei Sun, Kun Kuang, Yang Liu, Qingwen Liu, Wenwu Ou HIGHLIGHT: In this paper, we propose a new framework named Multiplex Target-Behavior Relation enhanced Network (MTBRN) to leverage multiplex relations between user behaviors and target item to enhance CTR prediction.

304, TITLE: Fine-Tuned Compressed Representations of Vessel Trajectories

https://dl.acm.org/doi/abs/10.1145/3340531.3412706 AUTHORS: Giannis Fikioris, Kostas Patroumpas, Alexander Artikis, Georgios Paliouras, Manolis Pitsikalis HIGHLIGHT: In this work, we present an extension of this system, that allows the user to fine-tune trajectory compression according to the requirements of a given application. 305, TITLE: Intent-Driven Similarity in E-Commerce Listings https://dl.acm.org/doi/abs/10.1145/3340531.3412715 AUTHORS: Gilad Fuchs, Yoni Acriche, Idan Hasson, Pavel Petrov HIGHLIGHT: In this paper we present a method we call "Listing2Query", or "L2Q", which uses a Sequence Labeling approach to learn token importance from our users? Impression Pacing for Jobs Marketplace at LinkedIn 306, TITLE: https://dl.acm.org/doi/abs/10.1145/3340531.3412711 AUTHORS: Sahin Cem Geyik, Luthfur Chowdhury, Florian Raudies, Wen Pu, Jianqiang Shen HIGHLIGHT: In this paper, we propose an impression-based spend computation system, hence an impression-based pacing scheme. 307, TITLE: Bid Shading in The Brave New World of First-Price Auctions https://dl.acm.org/doi/abs/10.1145/3340531.3412689 AUTHORS: Djordje Gligorijevic, Tian Zhou, Bharatbhushan Shetty, Brendan Kitts, Shengjun Pan, Junwei Pan, Aaron Flores HIGHLIGHT: In this study, we propose a machine learning approach of modeling optimal bid shading for non-censored online first-price ad auctions. 308, TITLE: Prospective Modeling of Users for Online Display Advertising via Deep Time-Aware Model https://dl.acm.org/doi/abs/10.1145/3340531.3412739 AUTHORS: Djordje Gligorijevic, Jelena Gligorijevic, Aaron Flores HIGHLIGHT: In this study, we propose a novel deep time-aware approach designed to model sequences of users' activities and capture implicit temporal signals of users' conversion intents. Learning to Profile: User Meta-Profile Network for Few-Shot Learning 309, TITLE: https://dl.acm.org/doi/abs/10.1145/3340531.3412722 AUTHORS: Hao Gong, Qifang Zhao, Tianyu Li, Derek Cho, DuyKhuong Nguyen HIGHLIGHT: 1) Meta-learning model: In the context of representation learning with e-commerce user behavior data, we propose a meta-learning framework called the Meta-Profile Network, which extends the ideas of matching network and relation network for knowledge transfer and fast adaptation; 2) Encoding strategy: To keep high fidelity of large-scale long-term sequential behavior data, we propose a time-heatmap encoding strategy that allows the model to encode data effectively; 3) Deep network architecture: A multi-modal model combined with multi-task learning architecture is utilized to address the cross-domain knowledge

learning and insufficient label problems.

310, TITLE: EdgeRec: Recommender System on Edge in Mobile Taobao

https://dl.acm.org/doi/abs/10.1145/3340531.3412700

 AUTHORS:
 Yu Gong, Ziwen Jiang, Yufei Feng, Binbin Hu, Kaiqi Zhao, Qingwen Liu, Wenwu Ou

 HIGHLIGHT:
 Our work, to our best knowledge, is the first attempt to design and implement the novel Recommender System

 on Edge (EdgeRec), which achieves Real-time User Perception and Real-time System Feedback.

311, TITLE: Price Forecast with High-Frequency Finance Data: An Autoregressive Recurrent Neural Network Model with Technical Indicators

https://dl.acm.org/doi/abs/10.1145/3340531.3412738

AUTHORS: Yuechun Gu, Da Yan, Sibo Yan, Zhe Jiang

HIGHLIGHT: We propose to adopt an autoregressive recurrent network instead so that the loss of the prediction at every time step contributes to the model training; we also treat a rich set of technical indicators at each time step as covariates to enhance the model input.

312, TITLE: Deep Multifaceted Transformers for Multi-objective Ranking in Large-Scale E-commerce Recommender Systems

https://dl.acm.org/doi/abs/10.1145/3340531.3412697

AUTHORS: Yulong Gu, Zhuoye Ding, Shuaiqiang Wang, Lixin Zou, Yiding Liu, Dawei Yin

HIGHLIGHT: In this paper, we argue that it is crucial to formulate users' different interests based on multiple types of behaviors and perform multi-task learning for significant improvement in multiple objectives simultaneously.

313, TITLE: A Deep Prediction Network for Understanding Advertiser Intent and Satisfaction https://dl.acm.org/doi/abs/10.1145/3340531.3412681 AUTHORS: Liyi Guo, Rui Lu, Haoqi Zhang, Junqi Jin, Zhenzhe Zheng, Fan Wu, Jin Li, Haiyang Xu, Han Li, Wenkai Lu, Jian Xu, Kun Gai HIGHLIGHT: In this paper, we propose a novel Deep Satisfaction Prediction Network (DSPN), which models advertiser intent and satisfaction simultaneously. 314, TITLE: DeText: A Deep Text Ranking Framework with BERT https://dl.acm.org/doi/abs/10.1145/3340531.3412699 AUTHORS: Weiwei Guo, Xiaowei Liu, Sida Wang, Huiji Gao, Ananth Sankar, Zimeng Yang, Qi Guo, Liang Zhang, Bo Long, Bee-Chung Chen, Deepak Agarwal HIGHLIGHT: In this paper, we investigate how to build an efficient BERT-based ranking model for industry use cases. 315. TITLE: P-Companion: A Principled Framework for Diversified Complementary Product Recommendation https://dl.acm.org/doi/abs/10.1145/3340531.3412732 AUTHORS: Junheng Hao, Tong Zhao, Jin Li, Xin Luna Dong, Christos Faloutsos, Yizhou Sun, Wei Wang HIGHLIGHT: Given one product, how to recommend its complementary products of different types is the key problem we tackle in this work. 316, TITLE: Loan Default Analysis with Multiplex Graph Learning https://dl.acm.org/doi/abs/10.1145/3340531.3412724 AUTHORS: Binbin Hu, Zhiqiang Zhang, Jun Zhou, Jingli Fang, Quanhui Jia, Yanming Fang, Quan Yu, Yuan Qi HIGHLIGHT: To address these issues, we develop a novel attributed multiplex graph based loan default detection approach for effectively integrating multiplex relations in financial scenarios. 317. TITLE: Imbalanced Time Series Classification for Flight Data Analyzing with Nonlinear Granger Causality Learning https://dl.acm.org/doi/abs/10.1145/3340531.3412710 Hao Huang, Chenxiao Xu, Shinjae Yoo, Weizhong Yan, Tianyi Wang, Feng Xue AUTHORS: HIGHLIGHT: Here, we present a neural network classification model for imbalanced multivariate time series by leveraging the information learned from normal class, which can also learn the nonlinear Granger causality for each class, so that we can pinpoint how time series classes differ from each other. Personalized Flight Itinerary Ranking at Fliggy 318, TITLE: https://dl.acm.org/doi/abs/10.1145/3340531.3412735 AUTHORS: Jinhong Huang, Yang Li, Shan Sun, Bufeng Zhang, Jin Huang HIGHLIGHT: To this end, a novel Personalized Flight itinerary Ranking Network (PFRN) is proposed in this paper. 319, TITLE: Learning Effective Representations for Person-Job Fit by Feature Fusion https://dl.acm.org/doi/abs/10.1145/3340531.3412717 AUTHORS: Junshu Jiang, Songyun Ye, Wei Wang, Jingran Xu, Xiaosheng Luo HIGHLIGHT: In this paper, we propose to learn comprehensive and effective representations of the candidates and job posts via feature fusion. 320, TITLE: Incorporating User Feedback into Sequence to Sequence Model Training https://dl.acm.org/doi/abs/10.1145/3340531.3412714 AUTHORS: Michaeel Kazi, Weiwei Guo, Huiji Gao, Bo Long HIGHLIGHT: In this work, we propose training a model with both the search history and user feedback datasets. 321. TITLE: Magellan: A Personalized Travel Recommendation System Using Transaction Data https://dl.acm.org/doi/abs/10.1145/3340531.3412725 AUTHORS: Konik Kothari, Dhruv Gelda, Wei Zhang, Hao Yang HIGHLIGHT: We present Magellan - a personalized travel recommendation system that is built entirely from card transaction data. 322, TITLE: ART (Attractive Recommendation Tailor): How the Diversity of Product Recommendations Affects Customer Purchase Preference in Fashion Industry? https://dl.acm.org/doi/abs/10.1145/3340531.3412687

AUTHORS: Hyokmin Kwon, Jaeho Han, Kyungsik Han

HIGHLIGHT: This study examines the impact of the 'diversity' of product recommendations on the 'preference' of a customer, using online/offline data from a leading fashion company.

323, TITLE:AliMeKG: Domain Knowledge Graph Construction and Application in E-commercehttps://dl.acm.org/doi/abs/10.1145/3340531.3412685AUTHORS:Feng-Lin Li, Hehong Chen, Guohai Xu, Tian Qiu, Feng Ji, Ji Zhang, Haiqing ChenHIGHLIGHT:In the paper, we systematically introduce how we construct domain knowledge graph from free text, anddemonstrate its busi­ness value with several applications.
324, TITLE:Peer-inspired Student Performance Prediction in Interactive Online Question Pools with Graph Neural Networkhttps://dl.acm.org/doi/abs/10.1145/3340531.3412733AUTHORS:Haotian Li, Huan Wei, Yong Wang, Yangqiu Song, Huamin QuHIGHLIGHT:In this paper, we propose a novel approach using Graph Neural Networks (GNNs) to achieve better studentperformance prediction in interactive online question pools.
325, TITLE:Spending Money Wisely: Online Electronic Coupon Allocation based on Real-Time User Intent Detectionhttps://dl.acm.org/doi/abs/10.1145/3340531.3412745AUTHORS:Liangwei Li, Liucheng Sun, Chenwei Weng, Chengfu Huo, Weijun RenHIGHLIGHT:In this paper, we decompose the coupon allocation task into two subtasks: the user intent detection task and theallocation task.
326, TITLE:Improving Multi-Scenario Learning to Rank in E-commerce by Exploiting Task Relationships in the LabelSpacehttps://dl.acm.org/doi/abs/10.1145/3340531.3412713AUTHORS:Pengcheng Li, Runze Li, Qing Da, An-Xiang Zeng, Lijun ZhangHIGHLIGHT:To solve the above problem, which we name Multi-Scenario Learning to Rank, we propose the Hybrid ofimplicit and explicit Mixture-of-Experts (HMoE) approach.
327, TITLE:Graph Neural Network for Tag Ranking in Tag-enhanced Video Recommendationhttps://dl.acm.org/doi/abs/10.1145/3340531.3416021AUTHORS:Qi Liu, Ruobing Xie, Lei Chen, Shukai Liu, Ke Tu, Peng Cui, Bo Zhang, Leyu LinHIGHLIGHT:In this paper, we propose a novel Graph neural network based tag ranking (GraphTR) framework on a hugeheterogeneous network with video, tag, user and media.
328, TITLE:Decoupled Graph Convolution Network for Inferring Substitutable and Complementary Itemshttps://dl.acm.org/doi/abs/10.1145/3340531.3412695AUTHORS:Yiding Liu, Yulong Gu, Zhuoye Ding, Junchao Gao, Ziyi Guo, Yongjun Bao, Weipeng YanHIGHLIGHT:To fill this gap, we propose a novel solution, namely Decoupled Graph Convolutional Network (DecGCN), tosolve the problem of inferring substitutable and complementary items.
329, TITLE:Two-Stage Audience Expansion for Financial Targeting in Marketinghttps://dl.acm.org/doi/abs/10.1145/3340531.3412748AUTHORS:Zhining Liu, Xiao-Fan Niu, Chenyi Zhuang, Yize Tan, Yixiang Mu, Jinjie Gu, Guannan ZhangHIGHLIGHT:Therefore, we propose a method to incorporate biased feedbacks with seeds in a meta-learning manner to panfor golden seeds from the noisy seed-set.
330, TITLE:Efficiently Training Intelligible Models for Global Explanationshttps://dl.acm.org/doi/abs/10.1145/3340531.3412702AUTHORS:Yin Lou, Yongliang Wang, Shiwei Liang, Yang DongHIGHLIGHT:In this work, we aim to improve the training efficiency of GAM.
331, TITLE:TwinBERT: Distilling Knowledge to Twin-Structured Compressed BERT Models for Large-Scale Retrievalhttps://dl.acm.org/doi/abs/10.1145/3340531.3412747AUTHORS:Wenhao Lu, Jian Jiao, Ruofei ZhangHIGHLIGHT:To address the problem, we present TwinBERT model, which has two improvements: 1) represent query anddocument separately using twin-structured encoders and 2) each encoder is a highly compressed BERT-like model with less than onethird of the parameters.
332, TITLE: Learning to Create Better Ads: Generation and Ranking Approaches for Ad Creative Refinement https://dl.acm.org/doi/abs/10.1145/3340531.3412720

AUTHORS: Shaunak Mishra, Manisha Verma, Yichao Zhou, Kapil Thadani, Wei Wang

HIGHLIGHT: In particular, given an input ad creative, we study approaches to refine the given ad text and image by: (i) generating new ad text, (ii) recommending keyphrases for new ad text, and (iii) recommending image tags (objects in the image) to select new ad image.

333, TITLE: Personalizing Natural Language Understanding using Multi-armed Bandits and Implicit Feedback https://dl.acm.org/doi/abs/10.1145/3340531.3412736 AUTHORS: Fabian Moerchen, Patrick Ernst, Giovanni Zappella HIGHLIGHT: In this work, we describe how we leveraged multi-armed bandits in combination with implicit customer feedback to improve accuracy and personalization of responses to voice request in the music domain.	r
334, TITLE: MiNet: Mixed Interest Network for Cross-Domain Click-Through Rate Prediction https://dl.acm.org/doi/abs/10.1145/3340531.3412728 AUTHORS: Wentao Ouyang, Xiuwu Zhang, Lei Zhao, Jinmei Luo, Yu Zhang, Heng Zou, Zhaojie Liu, Yanlong Du HIGHLIGHT: In this paper, we address this problem and leverage auxiliary data from a source domain to improve the prediction performance of a target domain.	CTR
 335, TITLE: Learning to Infer User Hidden States for Online Sequential Advertising https://dl.acm.org/doi/abs/10.1145/3340531.3412721 AUTHORS: Zhaoqing Peng, Junqi Jin, Lan Luo, Yaodong Yang, Rui Luo, Jun Wang, Weinan Zhang, Haiyang Xu, Xu, Chuan Yu, Tiejian Luo, Han Li, Jian Xu, Kun Gai HIGHLIGHT: In this paper, we model this intention as a latent variable and formulate the problem as a Partially Obse Markov Decision Process (POMDP) where the underlying intents are inferred based on the observable behaviors. 	Miao rvable
336, TITLE: Search-based User Interest Modeling with Lifelong Sequential Behavior Data for Click-Through Rate Prediction https://dl.acm.org/doi/abs/10.1145/3340531.3412744 AUTHORS: Qi Pi, Guorui Zhou, Yujing Zhang, Zhe Wang, Lejian Ren, Ying Fan, Xiaoqiang Zhu, Kun Gai HIGHLIGHT: In this paper, we tackle this problem by designing a new modeling paradigm, which we name as Search Interest Model (SIM). Production	1-based
337, TITLE:Category-aware Graph Neural Networks for Improving E-commerce Review Helpfulness Predictionhttps://dl.acm.org/doi/abs/10.1145/3340531.3412691AUTHORS:Xiaoru Qu, Zhao Li, Jialin Wang, Zhipeng Zhang, Pengcheng Zou, Junxiao Jiang, Jiaming Huang, RonJi Zhang, Jun GaoHIGHLIGHT:To handle these two challenges, we propose CA-GNN (Category Aware Graph Neural Networks), whiggraph neural networks (GNNs) to identify helpful reviews in a multi-task manner we employ GNNs with one shared and nitem-specific graph convolutions to learn the common features and each item's specific criterion for classifying reviewssimultaneously.	g Xiao, ch uses 1any
338, TITLE: Expert-in-the-loop AI for Polymer Discovery https://dl.acm.org/doi/abs/10.1145/3340531.3416020 AUTHORS: Petar Ristoski, Dmitry Yu Zubarev, Anna Lisa Gentile, Nathaniel Park, Daniel Sanders, Daniel Gruhl, I Kato, Steve Welch HIGHLIGHT: We propose a methodology to quickly capture the intent and expertise of a domain expert in order to trapersonalized AI models for specific tasks.	Linda ain
339, TITLE:An Extensive Investigation of Machine Learning Techniques for Sleep Apnea Screening https://dl.acm.org/doi/abs/10.1145/3340531.3412686 AUTHORS:AUTHORS:Jose F. Rodrigues, Jean-Louis Pepin, Lorraine Goeuriot, Sihem Amer-Yahia In this work, we extensively investigate the use of Machine Learning techniques in the task of determine which factors are more revealing with respect to OSA along with a discussion of the challenges to perform such a task.	ing
340, TITLE:Continuous Improvement of Medical Diagnostic Systems with Large Scale Patient Vignette Simulationhttps://dl.acm.org/doi/abs/10.1145/3340531.3412693AUTHORS:Suhrid Satyal, Nick Fletcher, Shameek GhoshHIGHLIGHT:Here, we address this challenge using a novel patient vignette simulation algorithm within an iterative ofin-the-loop methodology for semi-automatically evaluating and deploying medical diagnostic systems in production.	linician-
341, TITLE:Detection of Novel Social Bots by Ensembles of Specialized Classifiershttps://dl.acm.org/doi/abs/10.1145/3340531.3412698AUTHORS:Mohsen Sayyadiharikandeh, Onur Varol, Kai-Cheng Yang, Alessandro Flammini, Filippo Menczer	

HIGHLIGHT: To address these issues, we propose a new supervised learning method that trains classifiers specialized for each class of bots and combines their decisions through the maximum rule.

342, TITLE:	ITAD: Integrative Tensor-based Anomaly Detection System for Reducing False Positives of Satellite Systems
https://dl.acm.org/doi/	abs/10.1145/3340531.3412716
AUTHORS:	Youjin Shin, Sangyup Lee, Shahroz Tariq, Myeong Shin Lee, Okchul Jung, Daewon Chung, Simon S. Woo
HIGHLIGHT:	In this work, we introduce an Integrative Tensor-based Anomaly Detection (ITAD) framework to detect
anomalies in a satellite	e system with the goal of minimizing false positives.
343, TITLE:	Helix: DGA Domain Embeddings for Tracking and Exploring Botnets
https://dl.acm.org/doi/	abs/10.1145/3340531.3416022
AUTHORS:	Lior Sidi, Yisroel Mirsky, Asaf Nadler, Yuval Elovici, Asaf Shabtai
HIGHLIGHT:	In this paper, we present Helix, a method for tracking and exploring botnets.
344, TITLE: https://dl.acm.org/doi/ AUTHORS: HIGHLIGHT: from police reports.	Crime Linkage Based on Textual Hebrew Police Reports Utilizing Behavioral Patterns abs/10.1145/3340531.3412694 Adir Solomon, Amit Magen, Simo Hanouna, Mor Kertis, Bracha Shapira, Lior Rokach In this study, we propose an automatic and language independent method for extracting behavioral patterns
345, TITLE:	AGATHA: Automatic Graph Mining And Transformer based Hypothesis Generation Approach
https://dl.acm.org/doi/	abs/10.1145/3340531.3412684
AUTHORS:	Justin Sybrandt, Ilya Tyagin, Michael Shtutman, Ilya Safro
HIGHLIGHT:	We present AGATHA, a deep-learning hypothesis generation system that learns a data-driven ranking criteria
to recommend new bio	omedical connections.
346, TITLE: https://dl.acm.org/doi/ AUTHORS: Mounia Lalmas HIGHLIGHT: queries on a music str without severely impa	Query Understanding for Surfacing Under-served Music Content abs/10.1145/3340531.3412741 Federico Tomasi, Rishabh Mehrotra, Aasish Pappu, Judith Bütepage, Brian Brost, Hugo Galvão, We propose a framework to develop query understanding techniques to identify potential non-focused search eaming platform, where users' information needs are non-specific enough to expose under-served content cting user satisfaction.
347, TITLE:	LiFT: A Scalable Framework for Measuring Fairness in ML Applications
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412705
AUTHORS:	Sriram Vasudevan, Krishnaram Kenthapadi
HIGHLIGHT:	Motivated by the need to understand and address algorithmic bias in web-scale ML systems and the limitations
of existing fairness too	olkits, we present the LinkedIn Fairness Toolkit (LiFT), a framework for scalable computation of fairness
metrics as part of large	e ML systems.
348, TITLE:	Match Tracing: A Unified Framework for Real-time Win Prediction and Quantifiable Performance Evaluation
https://dl.acm.org/doi/	abs/10.1145/3340531.3412727
AUTHORS:	Kai Wang, Hao Li, Linxia Gong, Jianrong Tao, Runze Wu, Changjie Fan, Liang Chen, Peng Cui
HIGHLIGHT:	To this end, we develop a unified Match Tracing framework (namely, MT), for tackling the win prediction and
performance evaluatio	on jointly.
349, TITLE:	Masked-field Pre-training for User Intent Prediction
https://dl.acm.org/doi/	abs/10.1145/3340531.3412726
AUTHORS:	Peng Wang, Jiang Xu, Chunyi Liu, Hao Feng, Zang Li, Jieping Ye
HIGHLIGHT:	To overcome data sparsity, we propose a masked-field pre-training framework.
350, TITLE: https://dl.acm.org/doi/ AUTHORS: HIGHLIGHT: challenges.	Efficient Neural Query Auto Completion abs/10.1145/3340531.3412701 Sida Wang, Weiwei Guo, Huiji Gao, Bo Long In this paper, we propose an efficient neural QAC system with effective context modeling to overcome these

351, TITLE: A Joint Inverse Reinforcement Learning and Deep Learning Model for Drivers' Behavioral Prediction https://dl.acm.org/doi/abs/10.1145/3340531.3412682 AUTHORS: Guojun Wu, Yanhua Li, Shikai Luo, Ge Song, Qichao Wang, Jing He, Jieping Ye, Xiaohu Qie, Hongtu Zhu HIGHLIGHT: This paper aims to develop a joint framework of combining inverse reinforcement learning (IRL) with deep learning (DL) regression model, called IRL-DL, to predict drivers' future behavior in ride-hailing platforms.

352, TITLE: Deep Behavior Tracing with Multi-level Temporality Preserved Embedding https://dl.acm.org/doi/abs/10.1145/3340531.3412696

AUTHORS: Runze Wu, Hao Deng, Jianrong Tao, Changjie Fan, Qi Liu, Liang Chen

HIGHLIGHT: In this paper, we propose an intuitive and effective embedding method called Multi-level Aligned Temporal Embedding (MATE), which can tackle the temporal irregularity of recent behavior sequence and then align with the long-term periodicity in the activity cycle.

353, TITLE: Zero-Shot Heterogeneous Transfer Learning from Recommender Systems to Cold-Start Search Retrieval https://dl.acm.org/doi/abs/10.1145/3340531.3412752

AUTHORS: Tao Wu, Ellie Ka-In Chio, Heng-Tze Cheng, Yu Du, Steffen Rendle, Dima Kuzmin, Ritesh Agarwal, Li Zhang, John Anderson, Sarvjeet Singh, Tushar Chandra, Ed H. Chi, Wen Li, Ankit Kumar, Xiang Ma, Alex Soares, Nitin Jindal, Pei Cao HIGHLIGHT: In this paper, we propose a new Zero-Shot Heterogeneous Transfer Learning framework that transfers learned knowledge from the recommender system component to improve the search component of a content platform.

354, TITLE: Relevance Ranking for Real-Time Tweet Search

https://dl.acm.org/doi/abs/10.1145/3340531.3412743

AUTHORS: Yan Xia, Yu Sun, Tian Wang, Juan Caicedo Carvajal, Jinliang Fan, Bhargav Mangipudi, Lisa Huang, Yatharth Saraf

HIGHLIGHT: Considering the above properties and constraints, we present a relevance ranking system for Tweet search addressing all these challenges at Twitter.

 355, TITLE:
 Generating Full Spatiotemporal Vehicular Paths: A Data Fusion Approach

 https://dl.acm.org/doi/abs/10.1145/3340531.3412708

 AUTHORS:
 Nan Xiao, Nan Hu, Liang Yu, Cheng Long

 HIGHLIGHT:
 In this paper, we leverage two types of large traffic datasets - point flows and sample trajectories - to generate the full city-scale vehicular paths.

 356, TITLE:
 Multi-Channel Sellers Traffic Allocation in Large-scale E-commerce Promotion

 https://dl.acm.org/doi/abs/10.1145/3340531.3412730

 AUTHORS:
 Shen Xin, Yizhou Ye, Martin Ester, Cheng Long, Jie Zhang, Zhao Li, Kaiying Yuan, Yanghua Li

HIGHLIGHT: To address these problems, we design a Multi-Channel Sellers Traffic Allocation (MCSTA) optimization model to obtain optimal page view (PV) distribution concerning global GMV.

357, TITLE: aDMSCN: A Novel Perspective for User Intent Prediction in Customer Service Bots
https://dl.acm.org/doi/abs/10.1145/3340531.3412683
AUTHORS: Kuan Xu, Chilin Fu, Xiaolu Zhang, Cen Chen, Ya-Lin Zhang, Wenge Rong, Zujie Wen, Jun Zhou, Xiaolong Li, Yu Qiao
HIGHLIGHT: To address these two problems, we propose an attention-based Deep Multi-instance Sequential Cross Network (aDMSCN) to deal with the UIP task.

 358, TITLE:
 GraphSAIL: Graph Structure Aware Incremental Learning for Recommender Systems

 https://dl.acm.org/doi/abs/10.1145/3340531.3412754

 AUTHORS:
 Yishi Xu, Yingxue Zhang, Wei Guo, Huifeng Guo, Ruiming Tang, Mark Coates

 HIGHLIGHT:
 In this work, we propose to update GNN-based recommender models incrementally so that the computation time can be greatly reduced and models can be updated more frequently.

 359, TITLE:
 Ranking User Attributes for Fast Candidate Selection in Recommendation Systems

 https://dl.acm.org/doi/abs/10.1145/3340531.3412742

 AUTHORS:
 Huichao Xue

 HIGHLIGHT:
 We propose a model that forecasts the relevance of documents matched by each individual attribute.

 360, TITLE:
 Learning to Build User-tag Profile in Recommendation System

 https://dl.acm.org/doi/abs/10.1145/3340531.3412719

 AUTHORS:
 Su Yan, Xin Chen, Ran Huo, Xu Zhang, Leyu Lin

 HIGHLIGHT:
 In this paper, we propose a user tag profiling model (UTPM) to study user-tag profiling as a multi-label classification task using deep neural networks.

361, TITLE: You Are How You Use: Catching Gas Theft Suspects among Diverse Restaurant Users https://dl.acm.org/doi/abs/10.1145/3340531.3412751

AUTHORS:Xiaodu Yang, Xiuwen Yi, Shun Chen, Sijie Ruan, Junbo Zhang, Yu Zheng, Tianrui LiHIGHLIGHT:In this paper, we propose a gas-theft detection method msRank to discover suspicious restaurant users when

only scarce labels are available.

362, TITLE: Query-aware Tip Generation for Vertical Search

https://dl.acm.org/doi/abs/10.1145/3340531.3412740

AUTHORS: Yang Yang, Junmei Hao, Canjia Li, Zili Wang, Jingang Wang, Fuzheng Zhang, Rao Fu, Peixu Hou, Gong Zhang, Zhongyuan Wang

HIGHLIGHT: To address this issue, this paper proposes a query-aware tip generation framework, integrating query information into encoding and subsequent decoding processes.

363, TITLE: BotSpot: A Hybrid Learning Framework to Uncover Bot Install Fraud in Mobile Advertising https://dl.acm.org/doi/abs/10.1145/3340531.3412690

AUTHORS: Tianjun Yao, Qing Li, Shangsong Liang, Yadong Zhu

HIGHLIGHT: In this work, we propose an anti-fraud method based on heterogeneous graph that incorporates both local context and global context via graph neural networks (GNN) and gradient boosting classifier to detect bot fraud installs at Mobvista, a leading global mobile advertising company.

364, TITLE: Community Mitigation: A Data-driven System for COVID-19 Risk Assessment in a Hierarchical Manner https://dl.acm.org/doi/abs/10.1145/3340531.3412753

AUTHORS: Yanfang Ye, Yujie Fan, Shifu Hou, Yiming Zhang, Yiyue Qian, Shiyu Sun, Qian Peng, Mingxuan Ju, Wei Song, Kenneth Loparo

HIGHLIGHT: To slow the spread of virus infections and better respond with actionable strategies for community mitigation, leveraging the large-scale and real-time pandemic related data generated from heterogeneous sources (e.g., disease related data, demographic data, mobility data, and social media data), in this work, we propose and develop a data-driven system (named \hat{I} satellite), as an initial offering, to provide real-time COVID-19 risk assessment in a hierarchical manner in the United States.

365, TITLE: Who is Delivering My Food?: Detecting Food Delivery Abusers using Variational Reward Inference Networks https://dl.acm.org/doi/abs/10.1145/3340531.3412750

AUTHORS: DaeYoung Yoon, Simon S. Woo

HIGHLIGHT: In this work, we aim to detect food delivery abusers using unauthorized vehicles, by formulating this problem as a novelty detection over sequential data.

366, TITLE: Elevated Road Network: A Metric Learning Method for Recognizing Whether a Vehicle is on an Elevated Road https://dl.acm.org/doi/abs/10.1145/3340531.3412703

AUTHORS: Xiaobing Zhang, Hailiang Xu, Jian Yang, Jia Sun, Fan Chen, Leiyun Li

HIGHLIGHT: We propose Elevated Road Network (ERNet), a lightweight and real industrial neural network model for mobile navigation, to solve elevated road recognition fundamentally.

 367, TITLE:
 Predicting Quality of Automated Welding with Machine Learning and Semantics: A Bosch Case Study

 https://dl.acm.org/doi/abs/10.1145/3340531.3412737

AUTHORS:Baifan Zhou, Yulia Svetashova, Seongsu Byeon, Tim Pychynski, Ralf Mikut, Evgeny KharlamovHIGHLIGHT:In this paper we develop an ML pipeline to predict the spot quality before the actual welding happens.

368, TITLE: Ensembled CTR Prediction via Knowledge Distillation

https://dl.acm.org/doi/abs/10.1145/3340531.3412704

matching benchmark for linked data and knowledge graphs.

https://dl.acm.org/doi/abs/10.1145/3340531.3412783

AUTHORS:Jieming Zhu, Jinyang Liu, Weiqi Li, Jincai Lai, Xiuqiang He, Liang Chen, Zibin ZhengHIGHLIGHT:Instead, our work targets at a new model training strategy based on knowledge distillation (KD). KD is ateacher-student learning framework to transfer knowledge learned from a teacher model to a student model.

 369, TITLE:
 GeoLink Cruises: A Non-Synthetic Benchmark for Co-Reference Resolution on Knowledge Graphs

 https://dl.acm.org/doi/abs/10.1145/3340531.3412770

 AUTHORS:
 Reihaneh Amini, Lu Zhou, Pascal Hitzler

 HIGHLIGHT:
 In this paper, we propose the use of the Cruise entities in the GeoLink data repository as a real-world instance

370, TITLE: MLM: A Benchmark Dataset for Multitask Learning with Multiple Languages and Modalities

AUTHORS: Lehmann HIGHLIGHT: evaluate multitask sys	Jason Armitage, Endri Kacupaj, Golsa Tahmasebzadeh, Swati, Maria Maleshkova, Ralph Ewerth, Jens In this paper, we introduce the MLM (Multiple Languages and Modalities) dataset - a new resource to train and stems on samples in multiple modalities and three languages.
371, TITLE:	MindReader: Recommendation over Knowledge Graph Entities with Explicit User Ratings
https://dl.acm.org/doi	//abs/10.1145/3340531.3412759
AUTHORS:	Anders H. Brams, Anders L. Jakobsen, Theis E. Jendal, Matteo Lissandrini, Peter Dolog, Katja Hose
HIGHLIGHT:	To overcome this limitation, we introduce a new dataset, called the MindReader dataset, providing explicit user
ratings both for items	and for KG entities.
372, TITLE:	ORCAS: 20 Million Clicked Query-Document Pairs for Analyzing Search
https://dl.acm.org/doi	//abs/10.1145/3340531.3412779
AUTHORS:	Nick Craswell, Daniel Campos, Bhaskar Mitra, Emine Yilmaz, Bodo Billerbeck
HIGHLIGHT:	This paper describes a click data release related to the TREC Deep Learning Track document corpus.
373, TITLE:	TweetsCOV19 - A Knowledge Base of Semantically Annotated Tweets about the COVID-19 Pandemic
https://dl.acm.org/doi	//abs/10.1145/3340531.3412765
AUTHORS:	Dimitar Dimitrov, Erdal Baran, Pavlos Fafalios, Ran Yu, Xiaofei Zhu, Matthäus Zloch, Stefan Dietze
HIGHLIGHT:	In this paper, we describe TweetsCOV19, a publicly available knowledge base of currently more than 8 million
tweets, spanning Octo	ober 2019 - April 2020.
374, TITLE:	LensKit for Python: Next-Generation Software for Recommender Systems Experiments
https://dl.acm.org/doi	//abs/10.1145/3340531.3412778
AUTHORS:	Michael D. Ekstrand
HIGHLIGHT:	In this paper, I present the next generation of the LensKit project, re-envisioning the original tool's objectives as
flexible Python packa	age for supporting recommender systems research and development.
375, TITLE:	A Multidimensional Dataset Based on Crowdsourcing for Analyzing and Detecting News Bias
https://dl.acm.org/doi	//abs/10.1145/3340531.3412876
AUTHORS:	Michael Färber, Victoria Burkard, Adam Jatowt, Sora Lim
HIGHLIGHT:	In this paper, we firstly aggregate the aspects of news bias in related works by proposing a new annotation
schema for labeling n	news bias.
376, TITLE:	Feature Extraction for Large-Scale Text Collections
https://dl.acm.org/doi	//abs/10.1145/3340531.3412773
AUTHORS:	Luke Gallagher, Antonio Mallia, J. Shane Culpepper, Torsten Suel, B. Barla Cambazoglu
HIGHLIGHT:	In this paper, we introduce Fxt, an open-source framework to perform efficient and scalable feature extraction.
377, TITLE:	CauseNet: Towards a Causality Graph Extracted from the Web
https://dl.acm.org/doi	//abs/10.1145/3340531.3412763
AUTHORS:	Stefan Heindorf, Yan Scholten, Henning Wachsmuth, Axel-Cyrille Ngonga Ngomo, Martin Potthast
HIGHLIGHT:	Notwithstanding this challenge, we compile CauseNet, a large-scale knowledge base of claimed causal relations
between causal conce	ppts.
378, TITLE:	Fine-Grained Relevance Annotations for Multi-Task Document Ranking and Question Answering
https://dl.acm.org/doi	//abs/10.1145/3340531.3412878
AUTHORS:	Sebastian Hofstätter, Markus Zlabinger, Mete Sertkan, Michael Schröder, Allan Hanbury
HIGHLIGHT:	In this work, we present FiRA: a novel dataset of Fine-Grained Relevance Annotations.
379, TITLE:	SDM-RDFizer: An RML Interpreter for the Efficient Creation of RDF Knowledge Graphs
https://dl.acm.org/doi	//abs/10.1145/3340531.3412881
AUTHORS:	Enrique Iglesias, Samaneh Jozashoori, David Chaves-Fraga, Diego Collarana, Maria-Esther Vidal
HIGHLIGHT:	In this paper, we propose the SDM-RDFizer, an interpreter of the RDF Mapping Language (RML), to transform
raw data in various fo	ormats into an RDF knowledge graph.
380, TITLE: https://dl.acm.org/doi	Web Page Segmentation Revisited: Evaluation Framework and Dataset

https://dl.acm.org/doi/abs/10.1145/3340531.3412782 AUTHORS: Johannes Kiesel, Florian Kneist, Lars Meyer, Kristof Komlossy, Benno Stein, Martin Potthast HIGHLIGHT: To address this shortcoming, we contribute two resources: (1) An evaluation framework which can be adjusted to downstream tasks by measuring the segmentation similarity regarding visual, structural, and textual elements, and which includes measures for annotator agreement, segmentation quality, and an algorithm for segmentation fusion. (2) The Webis-WebSeg-20 dataset, comprising 42,450~crowdsourced segmentations for 8,490~web pages, outranging existing sources by an order of magnitude.

381, TITLE: The Newspaper Navigator Dataset: Extracting Headlines and Visual Content from 16 Million Historic Newspaper Pages in Chronicling America

https://dl.acm.org/doi/abs/10.1145/3340531.3412767

AUTHORS: Benjamin Charles Germain Lee, Jaime Mears, Eileen Jakeway, Meghan Ferriter, Chris Adams, Nathan Yarasavage, Deborah Thomas, Kate Zwaard, Daniel S. Weld

HIGHLIGHT: We describe our pipeline that utilizes this deep learning model to extract 7 classes of visual content: headlines, photographs, illustrations, maps, comics, editorial cartoons, and advertisements, complete with textual content such as captions derived from the METS/ALTO OCR, as well as image embeddings.

 382, TITLE:
 MAEC: A Multimodal Aligned Earnings Conference Call Dataset for Financial Risk Prediction

 https://dl.acm.org/doi/abs/10.1145/3340531.3412879

 AUTHORS:
 Jiazheng Li, Linyi Yang, Barry Smyth, Ruihai Dong

 HIGHLIGHT:
 We introduce a new, large-scale multi-modal, text-audio paired, earnings-call dataset named MAEC, based on

 S&P 1500 companies.
 Second Second

HIGHLIGHT: To address these issues, we have developed Argo Lite, a new in-browser interactive graph exploration and visualization tool.

 384, TITLE:
 CC-News-En: A Large English News Corpus

 https://dl.acm.org/doi/abs/10.1145/3340531.3412762

 AUTHORS:
 Joel Mackenzie, Rodger Benham, Matthias Petri, Johanne R. Trippas, J. Shane Culpepper, Alistair Moffat

 HIGHLIGHT:
 We describe a static, open-access news corpus using data from the Common Crawl Foundation, who provide

 free, publicly available web archives, including a continuous crawl of international news articles published in multiple languages.

385, TITLE: PrivacyFL: A Simulator for Privacy-Preserving and Secure Federated Learning
 https://dl.acm.org/doi/abs/10.1145/3340531.3412771
 AUTHORS: Vaikkunth Mugunthan, Anton Peraire-Bueno, Lalana Kagal
 HIGHLIGHT: In this paper, we introduce PrivacyFL, which is an extensible, easily configurable, and scalable simulator for

federated learning environments.

 386, TITLE:
 ContentWise Impressions: An Industrial Dataset with Impressions Included

 https://dl.acm.org/doi/abs/10.1145/3340531.3412774

 AUTHORS:
 Fernando B. Pérez Maurera, Maurizio Ferrari Dacrema, Lorenzo Saule, Mario Scriminaci, Paolo

 Cremonesi
 HIGHLIGHT:

 In this article, we introduce the \dataset dataset, a collection of implicit interactions and impressions of movies

HIGHLIGHT: In this article, we introduce the \dataset dataset, a collection of implicit interactions and impressions of movies and TV series from an Over-The-Top media service, which delivers its media contents over the Internet.

 387, TITLE:
 Profiling Entity Matching Benchmark Tasks

 https://dl.acm.org/doi/abs/10.1145/3340531.3412781

 AUTHORS:
 Anna Primpeli, Christian Bizer

 HIGHLIGHT:
 This resource paper systematically complements, profiles, and compares 21 entity matching benchmark tasks.

 388, TITLE:
 A Large Test Collection for Entity Aspect Linking

 https://dl.acm.org/doi/abs/10.1145/3340531.3412875

 AUTHORS:
 Jordan Ramsdell, Laura Dietz

 HIGHLIGHT:
 Complementing efforts of Nanni et al (2018), we provide a large-scale test collection which is derived from

 Wikipedia hyperlinks in a dump from 01/01/2020.

 389, TITLE:
 A Dataset of Journalists' Interactions with Their Readership: When Should Article Authors Reply to Reader

 Comments?
 https://dl.acm.org/doi/abs/10.1145/3340531.3412764

 AUTHORS:
 Julian Risch, Ralf Krestel

To this end, we present a dataset of dialogs in which journalists of The Guardian replied to reader comments HIGHLIGHT: and identify the reasons why.

390, TITLE: https://dl.acm.org/doi/ AUTHORS: HIGHLIGHT: algorithms.	Karate Club: An API Oriented Open-Source Python Framework for Unsupervised Learning on Graphs /abs/10.1145/3340531.3412757 Benedek Rozemberczki, Oliver Kiss, Rik Sarkar We present Karate Club - a Python framework combining more than 30 state-of-the-art graph mining
391, TITLE: https://dl.acm.org/doi/ AUTHORS: HIGHLIGHT: algorithms.	Little Ball of Fur: A Python Library for Graph Sampling /abs/10.1145/3340531.3412758 Benedek Rozemberczki, Oliver Kiss, Rik Sarkar In this paper, we describe Little Ball of Fur a Python library that includes more than twenty graph sampling
392, TITLE:	Falcon 2.0: An Entity and Relation Linking Tool over Wikidata
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412777
AUTHORS:	Ahmad Sakor, Kuldeep Singh, Anery Patel, Maria-Esther Vidal
HIGHLIGHT:	In this paper, we present Falcon 2.0, the first joint entity and relation linking tool over Wikidata.
393, TITLE:	GeoFlink: A Distributed and Scalable Framework for the Real-time Processing of Spatial Streams
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412761
AUTHORS:	Salman Ahmed Shaikh, Komal Mariam, Hiroyuki Kitagawa, Kyoung-Sook Kim
HIGHLIGHT:	To fill this gap, we present GeoFlink, which extends Apache Flink to support spatial data types, indexes and
continuous queries ov	er spatial data streams.
394, TITLE:	Event-QA: A Dataset for Event-Centric Question Answering over Knowledge Graphs
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412760
AUTHORS:	Tarcísio Souza Costa, Simon Gottschalk, Elena Demidova
HIGHLIGHT:	In this paper, we present the Event-QA dataset for answering event-centric questions over knowledge graphs.
395, TITLE:	ReQue: A Configurable Workflow and Dataset Collection for Query Refinement
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412775
AUTHORS:	Mahtab Tamannaee, Hossein Fani, Fattane Zarrinkalam, Jamil Samouh, Samad Paydar, Ebrahim Bagheri
HIGHLIGHT:	In this paper, we implement and publicly share a configurable software workflow and a collection of gold
standard datasets for t	raining and evaluating supervised query refinement methods.
396, TITLE:	BioKG: A Knowledge Graph for Relational Learning On Biological Data
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412776
AUTHORS:	Brian Walsh, Sameh K. Mohamed, Vít NováÄ ek
HIGHLIGHT:	To make relational learning on biomedical data more standardised and reproducible, we propose a new
biological knowledge	graph which provides a compilation of curated relational data from open biological databases in a unified format
with common, interlin	ked identifiers.
397, TITLE:	Flexible IR Pipelines with Capreolus
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412780
AUTHORS:	Andrew Yates, Kevin Martin Jose, Xinyu Zhang, Jimmy Lin
HIGHLIGHT:	In order to improve the flexibility of such toolkits, we propose implementing experimental pipelines as
dependency graphs of	functional "IR primitives," which we call modules, that can be used and combined as needed.
398, TITLE:	MIMICS: A Large-Scale Data Collection for Search Clarification
https://dl.acm.org/doi/	/abs/10.1145/3340531.3412772
AUTHORS:	Hamed Zamani, Gord Lueck, Everest Chen, Rodolfo Quispe, Flint Luu, Nick Craswell
HIGHLIGHT:	In this paper, we introduce MIMICS, a collection of search clarification datasets for real web search queries
sampled from the Bin	g query logs.
399. TITLE:	The Enslaved Dataset: A Real-world Complex Ontology Alignment Benchmark using Wikibase

399, TITLE:The Enslaved Dataset: A Real-world Complex Ontology Alignment Benchmark using Wikibase
https://dl.acm.org/doi/abs/10.1145/3340531.3412768AUTHORS:Lu Zhou, Cogan Shimizu, Pascal Hitzler, Alicia M. Sheill, Seila Gonzalez Estrecha, Catherine For
Tarr, Dean Rehberger Lu Zhou, Cogan Shimizu, Pascal Hitzler, Alicia M. Sheill, Seila Gonzalez Estrecha, Catherine Foley, Duncan HIGHLIGHT: In this paper, we propose a real-world dataset from the Enslaved project as a potential complex alignment benchmark.

400, TITLE:ReCOVery: A Multimodal Repository for COVID-19 News Credibility Researchhttps://dl.acm.org/doi/abs/10.1145/3340531.3412880AUTHORS:Xinyi Zhou, Apurva Mulay, Emilio Ferrara, Reza ZafaraniHIGHLIGHT:In this work, we present ReCOVery, a repository designed and constructed to facilitate research on combatingsuch information regarding COVID-19.